ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

144-34x+2x^{2}=112
16-2x ਨੂੰ 9-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
144-34x+2x^{2}-112=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 112 ਨੂੰ ਘਟਾ ਦਿਓ।
32-34x+2x^{2}=0
32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 144 ਵਿੱਚੋਂ 112 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-34x+32=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 32}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -34 ਨੂੰ b ਲਈ, ਅਤੇ 32 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 32}}{2\times 2}
-34 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-34\right)±\sqrt{1156-8\times 32}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-34\right)±\sqrt{1156-256}}{2\times 2}
-8 ਨੂੰ 32 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-34\right)±\sqrt{900}}{2\times 2}
1156 ਨੂੰ -256 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-34\right)±30}{2\times 2}
900 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{34±30}{2\times 2}
-34 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 34 ਹੈ।
x=\frac{34±30}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{64}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{34±30}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 34 ਨੂੰ 30 ਵਿੱਚ ਜੋੜੋ।
x=16
64 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{34±30}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 34 ਵਿੱਚੋਂ 30 ਨੂੰ ਘਟਾਓ।
x=1
4 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=16 x=1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
144-34x+2x^{2}=112
16-2x ਨੂੰ 9-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-34x+2x^{2}=112-144
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 144 ਨੂੰ ਘਟਾ ਦਿਓ।
-34x+2x^{2}=-32
-32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 112 ਵਿੱਚੋਂ 144 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-34x=-32
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}-34x}{2}=-\frac{32}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{34}{2}\right)x=-\frac{32}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-17x=-\frac{32}{2}
-34 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-17x=-16
-32 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-16+\left(-\frac{17}{2}\right)^{2}
-17, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{17}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{17}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-17x+\frac{289}{4}=-16+\frac{289}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{17}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-17x+\frac{289}{4}=\frac{225}{4}
-16 ਨੂੰ \frac{289}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{17}{2}\right)^{2}=\frac{225}{4}
ਫੈਕਟਰ x^{2}-17x+\frac{289}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{17}{2}=\frac{15}{2} x-\frac{17}{2}=-\frac{15}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=16 x=1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{17}{2} ਨੂੰ ਜੋੜੋ।