\left\{ \begin{array} { l } { 2 x + 9 y = 19 } \\ { 4 x + m y = 53 } \end{array} \right.
x, y ਲਈ ਹਲ ਕਰੋ
x=-\frac{477-19m}{2\left(m-18\right)}
y=\frac{15}{m-18}
m\neq 18
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2x+9y=19,4x+my=53
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
2x+9y=19
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ x ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ x ਲਈ ਹੱਲ ਕਰੋ।
2x=-9y+19
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9y ਨੂੰ ਘਟਾਓ।
x=\frac{1}{2}\left(-9y+19\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-\frac{9}{2}y+\frac{19}{2}
\frac{1}{2} ਨੂੰ -9y+19 ਵਾਰ ਗੁਣਾ ਕਰੋ।
4\left(-\frac{9}{2}y+\frac{19}{2}\right)+my=53
ਦੂਜੇ ਸਮੀਕਰਨ 4x+my=53 ਵਿੱਚ, x ਲਈ \frac{-9y+19}{2} ਨੂੰ ਬਦਲ ਦਿਓ।
-18y+38+my=53
4 ਨੂੰ \frac{-9y+19}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\left(m-18\right)y+38=53
-18y ਨੂੰ my ਵਿੱਚ ਜੋੜੋ।
\left(m-18\right)y=15
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 38 ਨੂੰ ਘਟਾਓ।
y=\frac{15}{m-18}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -18+m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-\frac{9}{2}\times \frac{15}{m-18}+\frac{19}{2}
x=-\frac{9}{2}y+\frac{19}{2} ਵਿੱਚ y ਲਈ \frac{15}{-18+m} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
x=-\frac{135}{2\left(m-18\right)}+\frac{19}{2}
-\frac{9}{2} ਨੂੰ \frac{15}{-18+m} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{19m-477}{2\left(m-18\right)}
\frac{19}{2} ਨੂੰ -\frac{135}{2\left(-18+m\right)} ਵਿੱਚ ਜੋੜੋ।
x=\frac{19m-477}{2\left(m-18\right)},y=\frac{15}{m-18}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x+9y=19,4x+my=53
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}2&9\\4&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\53\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}2&9\\4&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}2&9\\4&m\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{2m-9\times 4}&-\frac{9}{2m-9\times 4}\\-\frac{4}{2m-9\times 4}&\frac{2}{2m-9\times 4}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{2\left(m-18\right)}&-\frac{9}{2\left(m-18\right)}\\-\frac{2}{m-18}&\frac{1}{m-18}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{2\left(m-18\right)}\times 19+\left(-\frac{9}{2\left(m-18\right)}\right)\times 53\\\left(-\frac{2}{m-18}\right)\times 19+\frac{1}{m-18}\times 53\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19m-477}{2\left(m-18\right)}\\\frac{15}{m-18}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
x=\frac{19m-477}{2\left(m-18\right)},y=\frac{15}{m-18}
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) x ਅਤੇ y ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
2x+9y=19,4x+my=53
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
4\times 2x+4\times 9y=4\times 19,2\times 4x+2my=2\times 53
2x ਅਤੇ 4x ਨੂੰ ਸਮਾਨ ਬਣਾਉਣ ਲਈ, ਪਹਿਲੇ ਸਮੀਕਰਨ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 4 ਦੇ ਨਾਲ ਅਤੇ ਦੂਜੇ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
8x+36y=76,8x+2my=106
ਸਪਸ਼ਟ ਕਰੋ।
8x-8x+36y+\left(-2m\right)y=76-106
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ 8x+36y=76 ਵਿੱਚੋਂ 8x+2my=106 ਨੂੰ ਘਟਾ ਦਿਓ।
36y+\left(-2m\right)y=76-106
8x ਨੂੰ -8x ਵਿੱਚ ਜੋੜੋ। 8x ਅਤੇ -8x ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\left(36-2m\right)y=76-106
36y ਨੂੰ -2my ਵਿੱਚ ਜੋੜੋ।
\left(36-2m\right)y=-30
76 ਨੂੰ -106 ਵਿੱਚ ਜੋੜੋ।
y=-\frac{15}{18-m}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 36-2m ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
4x+m\left(-\frac{15}{18-m}\right)=53
4x+my=53 ਵਿੱਚ y ਲਈ -\frac{15}{18-m} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
4x-\frac{15m}{18-m}=53
m ਨੂੰ -\frac{15}{18-m} ਵਾਰ ਗੁਣਾ ਕਰੋ।
4x=\frac{2\left(477-19m\right)}{18-m}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{15m}{18-m} ਨੂੰ ਜੋੜੋ।
x=\frac{477-19m}{2\left(18-m\right)}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{477-19m}{2\left(18-m\right)},y=-\frac{15}{18-m}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}