\left\{ \begin{array} { l } { ( A + B ) \frac { 1 } { 2 } - B = \frac { 3 } { 4 } } \\ { ( 2 A + B ) \frac { 1 } { 4 } - B = \frac { 5 } { 4 } } \end{array} \right.
A, B ਲਈ ਹਲ ਕਰੋ
A=-\frac{1}{2}=-0.5
B=-2
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{2}A+\frac{1}{2}B-B=\frac{3}{4}
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। A+B ਨੂੰ \frac{1}{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4}
-\frac{1}{2}B ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{2}B ਅਤੇ -B ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}A+\frac{1}{4}B-B=\frac{5}{4}
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 2A+B ਨੂੰ \frac{1}{4} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4}
-\frac{3}{4}B ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{4}B ਅਤੇ -B ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4},\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4}
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4}
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ A ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ A ਲਈ ਹੱਲ ਕਰੋ।
\frac{1}{2}A=\frac{1}{2}B+\frac{3}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{B}{2} ਨੂੰ ਜੋੜੋ।
A=2\left(\frac{1}{2}B+\frac{3}{4}\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
A=B+\frac{3}{2}
2 ਨੂੰ \frac{B}{2}+\frac{3}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1}{2}\left(B+\frac{3}{2}\right)-\frac{3}{4}B=\frac{5}{4}
ਦੂਜੇ ਸਮੀਕਰਨ \frac{1}{2}A-\frac{3}{4}B=\frac{5}{4} ਵਿੱਚ, A ਲਈ B+\frac{3}{2} ਨੂੰ ਬਦਲ ਦਿਓ।
\frac{1}{2}B+\frac{3}{4}-\frac{3}{4}B=\frac{5}{4}
\frac{1}{2} ਨੂੰ B+\frac{3}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
-\frac{1}{4}B+\frac{3}{4}=\frac{5}{4}
\frac{B}{2} ਨੂੰ -\frac{3B}{4} ਵਿੱਚ ਜੋੜੋ।
-\frac{1}{4}B=\frac{1}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{4} ਨੂੰ ਘਟਾਓ।
B=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -4 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
A=-2+\frac{3}{2}
A=B+\frac{3}{2} ਵਿੱਚ B ਲਈ -2 ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ A ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
A=-\frac{1}{2}
\frac{3}{2} ਨੂੰ -2 ਵਿੱਚ ਜੋੜੋ।
A=-\frac{1}{2},B=-2
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{1}{2}A+\frac{1}{2}B-B=\frac{3}{4}
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। A+B ਨੂੰ \frac{1}{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4}
-\frac{1}{2}B ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{2}B ਅਤੇ -B ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}A+\frac{1}{4}B-B=\frac{5}{4}
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 2A+B ਨੂੰ \frac{1}{4} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4}
-\frac{3}{4}B ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{4}B ਅਤੇ -B ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4},\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4}
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{4}}{\frac{1}{2}\left(-\frac{3}{4}\right)-\left(-\frac{1}{2}\times \frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{\frac{1}{2}\left(-\frac{3}{4}\right)-\left(-\frac{1}{2}\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{\frac{1}{2}\left(-\frac{3}{4}\right)-\left(-\frac{1}{2}\times \frac{1}{2}\right)}&\frac{\frac{1}{2}}{\frac{1}{2}\left(-\frac{3}{4}\right)-\left(-\frac{1}{2}\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}6&-4\\4&-4\end{matrix}\right)\left(\begin{matrix}\frac{3}{4}\\\frac{5}{4}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}6\times \frac{3}{4}-4\times \frac{5}{4}\\4\times \frac{3}{4}-4\times \frac{5}{4}\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\-2\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
A=-\frac{1}{2},B=-2
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) A ਅਤੇ B ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
\frac{1}{2}A+\frac{1}{2}B-B=\frac{3}{4}
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। A+B ਨੂੰ \frac{1}{2} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4}
-\frac{1}{2}B ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{2}B ਅਤੇ -B ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}A+\frac{1}{4}B-B=\frac{5}{4}
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 2A+B ਨੂੰ \frac{1}{4} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4}
-\frac{3}{4}B ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{4}B ਅਤੇ -B ਨੂੰ ਮਿਲਾਓ।
\frac{1}{2}A-\frac{1}{2}B=\frac{3}{4},\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4}
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
\frac{1}{2}A-\frac{1}{2}A-\frac{1}{2}B+\frac{3}{4}B=\frac{3-5}{4}
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ \frac{1}{2}A-\frac{1}{2}B=\frac{3}{4} ਵਿੱਚੋਂ \frac{1}{2}A-\frac{3}{4}B=\frac{5}{4} ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{1}{2}B+\frac{3}{4}B=\frac{3-5}{4}
\frac{A}{2} ਨੂੰ -\frac{A}{2} ਵਿੱਚ ਜੋੜੋ। \frac{A}{2} ਅਤੇ -\frac{A}{2} ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\frac{1}{4}B=\frac{3-5}{4}
-\frac{B}{2} ਨੂੰ \frac{3B}{4} ਵਿੱਚ ਜੋੜੋ।
\frac{1}{4}B=-\frac{1}{2}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{3}{4} ਨੂੰ -\frac{5}{4} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
B=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\frac{1}{2}A-\frac{3}{4}\left(-2\right)=\frac{5}{4}
\frac{1}{2}A-\frac{3}{4}B=\frac{5}{4} ਵਿੱਚ B ਲਈ -2 ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ A ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
\frac{1}{2}A+\frac{3}{2}=\frac{5}{4}
-\frac{3}{4} ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1}{2}A=-\frac{1}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{2} ਨੂੰ ਘਟਾਓ।
A=-\frac{1}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
A=-\frac{1}{2},B=-2
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}