ਮੁਲਾਂਕਣ ਕਰੋ
\frac{687}{32}=21.46875
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\int x^{2}+\frac{1}{x^{3}}\mathrm{d}x
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ।
\int x^{2}\mathrm{d}x+\int \frac{1}{x^{3}}\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\frac{x^{3}}{3}+\int \frac{1}{x^{3}}\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{2}\mathrm{d}x ਨੂੰ \frac{x^{3}}{3} ਨਾਲ ਬਦਲੋ।
\frac{x^{3}}{3}-\frac{1}{2x^{2}}
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int \frac{1}{x^{3}}\mathrm{d}x ਨੂੰ -\frac{1}{2x^{2}} ਨਾਲ ਬਦਲੋ।
\frac{4^{3}}{3}-\frac{4^{-2}}{2}-\left(\frac{1^{3}}{3}-\frac{1^{-2}}{2}\right)
ਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ), ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਉੱਪਰਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤੇ ਵਿਅੰਜਕ ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ - ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਹੇਠਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
\frac{687}{32}
ਸਪਸ਼ਟ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}