ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int _{0}^{3}81+13.5x+57x+9.5x^{2}\mathrm{d}x
13.5+9.5x ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ 6+x ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
\int _{0}^{3}81+70.5x+9.5x^{2}\mathrm{d}x
70.5x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13.5x ਅਤੇ 57x ਨੂੰ ਮਿਲਾਓ।
\int 81+\frac{141x}{2}+\frac{19x^{2}}{2}\mathrm{d}x
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ।
\int 81\mathrm{d}x+\int \frac{141x}{2}\mathrm{d}x+\int \frac{19x^{2}}{2}\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\int 81\mathrm{d}x+\frac{141\int x\mathrm{d}x}{2}+\frac{19\int x^{2}\mathrm{d}x}{2}
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
81x+\frac{141\int x\mathrm{d}x}{2}+\frac{19\int x^{2}\mathrm{d}x}{2}
ਸਾਝੇ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦੀ ਤਾਲਿਕਾ ਦੇ ਨਿਯਮ \int a\mathrm{d}x=ax ਦੀ ਵਰਤੋਂ ਕਰਕੇ 81 ਦਾ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਪਤਾ ਕਰੋ।
81x+\frac{141x^{2}}{4}+\frac{19\int x^{2}\mathrm{d}x}{2}
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x\mathrm{d}x ਨੂੰ \frac{x^{2}}{2} ਨਾਲ ਬਦਲੋ। 70.5 ਨੂੰ \frac{x^{2}}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
81x+\frac{141x^{2}}{4}+\frac{19x^{3}}{6}
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{2}\mathrm{d}x ਨੂੰ \frac{x^{3}}{3} ਨਾਲ ਬਦਲੋ। 9.5 ਨੂੰ \frac{x^{3}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
81\times 3+\frac{141}{4}\times 3^{2}+\frac{19}{6}\times 3^{3}-\left(81\times 0+\frac{141}{4}\times 0^{2}+\frac{19}{6}\times 0^{3}\right)
ਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ), ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਉੱਪਰਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤੇ ਵਿਅੰਜਕ ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ - ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਹੇਠਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
\frac{2583}{4}
ਸਪਸ਼ਟ ਕਰੋ।