ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. y
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int y-y^{2}\mathrm{d}y
y ਨੂੰ 1-y ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
ਕਿਉਂਕਿ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int y\mathrm{d}y ਨੂੰ \frac{y^{2}}{2} ਨਾਲ ਬਦਲੋ।
\frac{y^{2}}{2}-\frac{y^{3}}{3}
ਕਿਉਂਕਿ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int y^{2}\mathrm{d}y ਨੂੰ \frac{y^{3}}{3} ਨਾਲ ਬਦਲੋ। -1 ਨੂੰ \frac{y^{3}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{y^{2}}{2}-\frac{y^{3}}{3}+С
ਜੇ F\left(y\right) f\left(y\right) ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੈ, ਤਾਂ f\left(y\right) ਦੇ ਸਾਰੇ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਦਾ ਸੈੱਟ F\left(y\right)+C ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ, ਇੰਟੀਗ੍ਰੇਸ਼ਨ C\in \mathrm{R} ਦੇ ਸਥਾਈ ਅੰਕ ਨੂੰ ਪਰਿਣਾਮ ਵਿੱਚ ਜੋੜੋ।