ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int _{0}^{4}6-\left(16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}\right)\mathrm{d}x
\left(4-\sqrt{x}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\int _{0}^{4}6-\left(16-8\sqrt{x}+x\right)\mathrm{d}x
\sqrt{x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x ਪ੍ਰਾਪਤ ਕਰੋ।
\int _{0}^{4}6-16+8\sqrt{x}-x\mathrm{d}x
16-8\sqrt{x}+x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
\int _{0}^{4}-10+8\sqrt{x}-x\mathrm{d}x
-10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
\int -10+8\sqrt{x}-x\mathrm{d}x
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ।
\int -10\mathrm{d}x+\int 8\sqrt{x}\mathrm{d}x+\int -x\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\int -10\mathrm{d}x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
-10x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
ਸਾਝੇ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦੀ ਤਾਲਿਕਾ ਦੇ ਨਿਯਮ \int a\mathrm{d}x=ax ਦੀ ਵਰਤੋਂ ਕਰਕੇ -10 ਦਾ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਪਤਾ ਕਰੋ।
-10x+\frac{16x^{\frac{3}{2}}}{3}-\int x\mathrm{d}x
\sqrt{x} ਨੂੰ x^{\frac{1}{2}} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{\frac{1}{2}}\mathrm{d}x ਨੂੰ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} ਨਾਲ ਬਦਲੋ। ਸਪਸ਼ਟ ਕਰੋ। 8 ਨੂੰ \frac{2x^{\frac{3}{2}}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
-10x+\frac{16x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x\mathrm{d}x ਨੂੰ \frac{x^{2}}{2} ਨਾਲ ਬਦਲੋ। -1 ਨੂੰ \frac{x^{2}}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
-10x-\frac{x^{2}}{2}+\frac{16x^{\frac{3}{2}}}{3}
ਸਪਸ਼ਟ ਕਰੋ।
-10\times 4-\frac{4^{2}}{2}+\frac{16}{3}\times 4^{\frac{3}{2}}-\left(-10\times 0-\frac{0^{2}}{2}+\frac{16}{3}\times 0^{\frac{3}{2}}\right)
ਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ), ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਉੱਪਰਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤੇ ਵਿਅੰਜਕ ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ - ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਹੇਠਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
-\frac{16}{3}
ਸਪਸ਼ਟ ਕਰੋ।