ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int _{0}^{1}\sqrt{y}\mathrm{d}y
\sqrt{y} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2\sqrt{y} ਅਤੇ -\sqrt{y} ਨੂੰ ਮਿਲਾਓ।
\int \sqrt{y}\mathrm{d}y
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ।
\frac{2y^{\frac{3}{2}}}{3}
\sqrt{y} ਨੂੰ y^{\frac{1}{2}} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਕਿਉਂਕਿ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int y^{\frac{1}{2}}\mathrm{d}y ਨੂੰ \frac{y^{\frac{3}{2}}}{\frac{3}{2}} ਨਾਲ ਬਦਲੋ। ਸਪਸ਼ਟ ਕਰੋ।
\frac{2}{3}\times 1^{\frac{3}{2}}-\frac{2}{3}\times 0^{\frac{3}{2}}
ਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ), ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਉੱਪਰਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤੇ ਵਿਅੰਜਕ ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ - ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਹੇਠਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
\frac{2}{3}
ਸਪਸ਼ਟ ਕਰੋ।