ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int _{-1}^{3}x-2x^{2}\mathrm{d}x
x ਨੂੰ 1-2x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\int x-2x^{2}\mathrm{d}x
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ।
\int x\mathrm{d}x+\int -2x^{2}\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\int x\mathrm{d}x-2\int x^{2}\mathrm{d}x
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
\frac{x^{2}}{2}-2\int x^{2}\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x\mathrm{d}x ਨੂੰ \frac{x^{2}}{2} ਨਾਲ ਬਦਲੋ।
\frac{x^{2}}{2}-\frac{2x^{3}}{3}
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{2}\mathrm{d}x ਨੂੰ \frac{x^{3}}{3} ਨਾਲ ਬਦਲੋ। -2 ਨੂੰ \frac{x^{3}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{3^{2}}{2}-\frac{2}{3}\times 3^{3}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{2}{3}\left(-1\right)^{3}\right)
ਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ), ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਉੱਪਰਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤੇ ਵਿਅੰਜਕ ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ - ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਹੇਠਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
-\frac{44}{3}
ਸਪਸ਼ਟ ਕਰੋ।