ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int _{-1}^{1}y-y^{2}\mathrm{d}y
1-y ਨੂੰ y ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\int y-y^{2}\mathrm{d}y
ਸਭ ਤੋਂ ਪਹਿਲਾਂ ਅਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦਾ ਮੁਲਾਂਕਣ ਕਰੋ।
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
ਕਿਉਂਕਿ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int y\mathrm{d}y ਨੂੰ \frac{y^{2}}{2} ਨਾਲ ਬਦਲੋ।
\frac{y^{2}}{2}-\frac{y^{3}}{3}
ਕਿਉਂਕਿ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int y^{2}\mathrm{d}y ਨੂੰ \frac{y^{3}}{3} ਨਾਲ ਬਦਲੋ। -1 ਨੂੰ \frac{y^{3}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1^{2}}{2}-\frac{1^{3}}{3}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)
ਨਿਸ਼ਚਿਤ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ), ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਉੱਪਰਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤੇ ਵਿਅੰਜਕ ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ - ਇੰਟੀਗ੍ਰੇਸ਼ਨ ਦੀ ਹੇਠਲੀ ਸੀਮਾ ਤੇ ਮੁਲਾਂਕਣ ਕੀਤਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ।
-\frac{2}{3}
ਸਪਸ਼ਟ ਕਰੋ।