ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{3}\mathrm{d}x ਨੂੰ \frac{x^{4}}{4} ਨਾਲ ਬਦਲੋ।
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{2}\mathrm{d}x ਨੂੰ \frac{x^{3}}{3} ਨਾਲ ਬਦਲੋ। -2 ਨੂੰ \frac{x^{3}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+3\sqrt[3]{x}
\frac{1}{x^{\frac{2}{3}}} ਨੂੰ x^{-\frac{2}{3}} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{-\frac{2}{3}}\mathrm{d}x ਨੂੰ \frac{x^{\frac{1}{3}}}{\frac{1}{3}} ਨਾਲ ਬਦਲੋ। ਘਾਤ ਅੰਕ ਨੂੰ ਮੂਲ ਵਿੱਚ ਸਰਲ ਬਣਾਓ ਅਤੇ ਬਦਲੋ।
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+3\sqrt[3]{x}+С
ਜੇ F\left(x\right) f\left(x\right) ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੈ, ਤਾਂ f\left(x\right) ਦੇ ਸਾਰੇ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਦਾ ਸੈੱਟ F\left(x\right)+C ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ, ਇੰਟੀਗ੍ਰੇਸ਼ਨ C\in \mathrm{R} ਦੇ ਸਥਾਈ ਅੰਕ ਨੂੰ ਪਰਿਣਾਮ ਵਿੱਚ ਜੋੜੋ।