ਮੁਲਾਂਕਣ ਕਰੋ
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+64x+С
ਅੰਤਰ ਦੱਸੋ w.r.t. x
\left(15x^{2}+4\right)\left(5x^{3}+4\right)^{2}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\int \left(25\left(x^{3}\right)^{2}+40x^{3}+16\right)\left(15x^{2}+4\right)\mathrm{d}x
\left(5x^{3}+4\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\int \left(25x^{6}+40x^{3}+16\right)\left(15x^{2}+4\right)\mathrm{d}x
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 6 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\int 375x^{8}+100x^{6}+600x^{5}+160x^{3}+240x^{2}+64\mathrm{d}x
25x^{6}+40x^{3}+16 ਨੂੰ 15x^{2}+4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\int 375x^{8}\mathrm{d}x+\int 100x^{6}\mathrm{d}x+\int 600x^{5}\mathrm{d}x+\int 160x^{3}\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int 64\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
375\int x^{8}\mathrm{d}x+100\int x^{6}\mathrm{d}x+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
\frac{125x^{9}}{3}+100\int x^{6}\mathrm{d}x+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{8}\mathrm{d}x ਨੂੰ \frac{x^{9}}{9} ਨਾਲ ਬਦਲੋ। 375 ਨੂੰ \frac{x^{9}}{9} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{6}\mathrm{d}x ਨੂੰ \frac{x^{7}}{7} ਨਾਲ ਬਦਲੋ। 100 ਨੂੰ \frac{x^{7}}{7} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{5}\mathrm{d}x ਨੂੰ \frac{x^{6}}{6} ਨਾਲ ਬਦਲੋ। 600 ਨੂੰ \frac{x^{6}}{6} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{3}\mathrm{d}x ਨੂੰ \frac{x^{4}}{4} ਨਾਲ ਬਦਲੋ। 160 ਨੂੰ \frac{x^{4}}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+\int 64\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{2}\mathrm{d}x ਨੂੰ \frac{x^{3}}{3} ਨਾਲ ਬਦਲੋ। 240 ਨੂੰ \frac{x^{3}}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+64x
ਸਾਝੇ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦੀ ਤਾਲਿਕਾ ਦੇ ਨਿਯਮ \int a\mathrm{d}x=ax ਦੀ ਵਰਤੋਂ ਕਰਕੇ 64 ਦਾ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਪਤਾ ਕਰੋ।
80x^{3}+64x+100x^{6}+40x^{4}+\frac{125x^{9}}{3}+\frac{100x^{7}}{7}
ਸਪਸ਼ਟ ਕਰੋ।
80x^{3}+64x+100x^{6}+40x^{4}+\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+С
ਜੇ F\left(x\right) f\left(x\right) ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੈ, ਤਾਂ f\left(x\right) ਦੇ ਸਾਰੇ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਦਾ ਸੈੱਟ F\left(x\right)+C ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ, ਇੰਟੀਗ੍ਰੇਸ਼ਨ C\in \mathrm{R} ਦੇ ਸਥਾਈ ਅੰਕ ਨੂੰ ਪਰਿਣਾਮ ਵਿੱਚ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}