ਮੁਲਾਂਕਣ ਕਰੋ
\frac{x^{4}}{2}-2x^{2}+x+С
ਅੰਤਰ ਦੱਸੋ w.r.t. x
2x^{3}-4x+1
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\int 2x^{3}\mathrm{d}x+\int -4x\mathrm{d}x+\int 1\mathrm{d}x
ਇੱਕ-ਇੱਕ ਕਰਕੇ ਸੰਖਿਆਵਾਂ ਨੂੰ ਜੋੜੋ।
2\int x^{3}\mathrm{d}x-4\int x\mathrm{d}x+\int 1\mathrm{d}x
ਹਰ ਸੰਖਿਆ ਵਿੱਚ ਸਥਾਈ ਅੰਕ ਦੇ ਗੁਣਨਖੰਡ ਬਣਾਓ।
\frac{x^{4}}{2}-4\int x\mathrm{d}x+\int 1\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x^{3}\mathrm{d}x ਨੂੰ \frac{x^{4}}{4} ਨਾਲ ਬਦਲੋ। 2 ਨੂੰ \frac{x^{4}}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x^{4}}{2}-2x^{2}+\int 1\mathrm{d}x
ਕਿਉਂਕਿ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ਲਈ ਹੈ, \int x\mathrm{d}x ਨੂੰ \frac{x^{2}}{2} ਨਾਲ ਬਦਲੋ। -4 ਨੂੰ \frac{x^{2}}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{x^{4}}{2}-2x^{2}+x
ਸਾਝੇ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦੀ ਤਾਲਿਕਾ ਦੇ ਨਿਯਮ \int a\mathrm{d}x=ax ਦੀ ਵਰਤੋਂ ਕਰਕੇ 1 ਦਾ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਪਤਾ ਕਰੋ।
\frac{x^{4}}{2}-2x^{2}+x+С
ਜੇ F\left(x\right) f\left(x\right) ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੈ, ਤਾਂ f\left(x\right) ਦੇ ਸਾਰੇ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਦਾ ਸੈੱਟ F\left(x\right)+C ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ, ਇੰਟੀਗ੍ਰੇਸ਼ਨ C\in \mathrm{R} ਦੇ ਸਥਾਈ ਅੰਕ ਨੂੰ ਪਰਿਣਾਮ ਵਿੱਚ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}