ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image

ਸਾਂਝਾ ਕਰੋ

\int \frac{\frac{1}{6}+\frac{3}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
6 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। \frac{1}{6} ਅਤੇ \frac{1}{2} ਨੂੰ 6 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\int \frac{\frac{1+3}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
ਕਿਉਂਕਿ \frac{1}{6} ਅਤੇ \frac{3}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\int \frac{\frac{4}{6}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\int \frac{\frac{2}{3}}{2-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\int \frac{\frac{2}{3}}{\frac{6}{3}-\frac{1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
2 ਨੂੰ \frac{6}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\int \frac{\frac{2}{3}}{\frac{6-1}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
ਕਿਉਂਕਿ \frac{6}{3} ਅਤੇ \frac{1}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\int \frac{\frac{2}{3}}{\frac{5}{3}}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\int \frac{2}{3}\times \frac{3}{5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
\frac{2}{3} ਨੂੰ \frac{5}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2}{3}ਨੂੰ \frac{5}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\int \frac{2\times 3}{3\times 5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{2}{3} ਟਾਈਮਸ \frac{3}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\int \frac{2}{5}-\left(\frac{1}{2}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 3 ਨੂੰ ਰੱਦ ਕਰੋ।
\int \frac{2}{5}-\left(\frac{3}{6}-\frac{1}{6}\right)\times \frac{6}{5}\mathrm{d}x
2 ਅਤੇ 6 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। \frac{1}{2} ਅਤੇ \frac{1}{6} ਨੂੰ 6 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\int \frac{2}{5}-\frac{3-1}{6}\times \frac{6}{5}\mathrm{d}x
ਕਿਉਂਕਿ \frac{3}{6} ਅਤੇ \frac{1}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\int \frac{2}{5}-\frac{2}{6}\times \frac{6}{5}\mathrm{d}x
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\int \frac{2}{5}-\frac{1}{3}\times \frac{6}{5}\mathrm{d}x
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\int \frac{2}{5}-\frac{1\times 6}{3\times 5}\mathrm{d}x
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{3} ਟਾਈਮਸ \frac{6}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\int \frac{2}{5}-\frac{6}{15}\mathrm{d}x
\frac{1\times 6}{3\times 5} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\int \frac{2}{5}-\frac{2}{5}\mathrm{d}x
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{15} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\int 0\mathrm{d}x
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{2}{5} ਵਿੱਚੋਂ \frac{2}{5} ਨੂੰ ਘਟਾ ਦਿਓ।
0
ਸਾਝੇ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਦੀ ਤਾਲਿਕਾ ਦੇ ਨਿਯਮ \int a\mathrm{d}x=ax ਦੀ ਵਰਤੋਂ ਕਰਕੇ 0 ਦਾ ਇੰਟੇਗ੍ਰਲ (ਅਨੁਕੂਲਕ) ਪਤਾ ਕਰੋ।
С
ਜੇ F\left(x\right) f\left(x\right) ਦਾ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਹੈ, ਤਾਂ f\left(x\right) ਦੇ ਸਾਰੇ ਐਂਟੀਡੈਰੀਵੇਟਿਵ ਦਾ ਸੈੱਟ F\left(x\right)+C ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਲਈ, ਇੰਟੀਗ੍ਰੇਸ਼ਨ C\in \mathrm{R} ਦੇ ਸਥਾਈ ਅੰਕ ਨੂੰ ਪਰਿਣਾਮ ਵਿੱਚ ਜੋੜੋ।