ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x^{2}}-\frac{2x}{x^{2}})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। x^{2} ਅਤੇ x ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ x^{2} ਹੈ। \frac{2}{x} ਨੂੰ \frac{x}{x} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-2x}{x^{2}})
ਕਿਉਂਕਿ \frac{2}{x^{2}} ਅਤੇ \frac{2x}{x^{2}} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+2)-\left(-2x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})}{\left(x^{2}\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{x^{2}\left(-2\right)x^{1-1}-\left(-2x^{1}+2\right)\times 2x^{2-1}}{\left(x^{2}\right)^{2}}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{1}+2\right)\times 2x^{1}}{\left(x^{2}\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{x^{2}\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}+2\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤਦਿਆਂ ਵਿਸਥਾਰ ਕਰੋ।
\frac{-2x^{2}-\left(-2\times 2x^{1+1}+2\times 2x^{1}\right)}{\left(x^{2}\right)^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-2x^{2}-\left(-4x^{2}+4x^{1}\right)}{\left(x^{2}\right)^{2}}
ਗਿਣਤੀ ਕਰੋ।
\frac{-2x^{2}-\left(-4x^{2}\right)-4x^{1}}{\left(x^{2}\right)^{2}}
ਬੇਲੋੜੀਆਂ ਬ੍ਰੈਕਟਾਂ ਨੂੰ ਹਟਾਓ।
\frac{\left(-2-\left(-4\right)\right)x^{2}-4x^{1}}{\left(x^{2}\right)^{2}}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{2x^{2}-4x^{1}}{\left(x^{2}\right)^{2}}
-2 ਵਿੱਚੋਂ -4 ਨੂੰ ਘਟਾਓ।
\frac{2x\left(x^{1}-2x^{0}\right)}{\left(x^{2}\right)^{2}}
2x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{2x\left(x^{1}-2x^{0}\right)}{x^{2\times 2}}
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2x\left(x^{1}-2x^{0}\right)}{x^{4}}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2\left(x^{1}-2x^{0}\right)}{x^{4-1}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{2\left(x^{1}-2x^{0}\right)}{x^{3}}
4 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
\frac{2\left(x-2x^{0}\right)}{x^{3}}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\frac{2\left(x-2\times 1\right)}{x^{3}}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\frac{2\left(x-2\right)}{x^{3}}
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।