ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(x-1\right)\left(x-1\right)=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -\frac{1}{2},1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-1\right)\left(2x+1\right), ਜੋ 2x+1,x-1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-1\right)^{2}=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
\left(x-1\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x-1 ਅਤੇ x-1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(x-1\right)^{2}=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
\left(2x+1\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x+1 ਅਤੇ 2x+1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-2x+1=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1=4x^{2}+4x+1+\left(x-1\right)\left(2x+1\right)\times 3
\left(2x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1=4x^{2}+4x+1+\left(2x^{2}-x-1\right)\times 3
x-1 ਨੂੰ 2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-2x+1=4x^{2}+4x+1+6x^{2}-3x-3
2x^{2}-x-1 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-2x+1=10x^{2}+4x+1-3x-3
10x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ 6x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x+1=10x^{2}+x+1-3
x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x+1=10x^{2}+x-2
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x+1-10x^{2}=x-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-9x^{2}-2x+1=x-2
-9x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -10x^{2} ਨੂੰ ਮਿਲਾਓ।
-9x^{2}-2x+1-x=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-9x^{2}-3x+1=-2
-3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-9x^{2}-3x+1+2=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਜੋੜੋ।
-9x^{2}-3x+3=0
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)\times 3}}{2\left(-9\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -9 ਨੂੰ a ਲਈ, -3 ਨੂੰ b ਲਈ, ਅਤੇ 3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)\times 3}}{2\left(-9\right)}
-3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{9+36\times 3}}{2\left(-9\right)}
-4 ਨੂੰ -9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{9+108}}{2\left(-9\right)}
36 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{117}}{2\left(-9\right)}
9 ਨੂੰ 108 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-3\right)±3\sqrt{13}}{2\left(-9\right)}
117 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{3±3\sqrt{13}}{2\left(-9\right)}
-3 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 3 ਹੈ।
x=\frac{3±3\sqrt{13}}{-18}
2 ਨੂੰ -9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{3\sqrt{13}+3}{-18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±3\sqrt{13}}{-18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ 3\sqrt{13} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{13}-1}{6}
3+3\sqrt{13} ਨੂੰ -18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3-3\sqrt{13}}{-18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±3\sqrt{13}}{-18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਵਿੱਚੋਂ 3\sqrt{13} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{13}-1}{6}
3-3\sqrt{13} ਨੂੰ -18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{13}-1}{6} x=\frac{\sqrt{13}-1}{6}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(x-1\right)\left(x-1\right)=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -\frac{1}{2},1 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-1\right)\left(2x+1\right), ਜੋ 2x+1,x-1 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-1\right)^{2}=\left(2x+1\right)\left(2x+1\right)+\left(x-1\right)\left(2x+1\right)\times 3
\left(x-1\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x-1 ਅਤੇ x-1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(x-1\right)^{2}=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
\left(2x+1\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x+1 ਅਤੇ 2x+1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-2x+1=\left(2x+1\right)^{2}+\left(x-1\right)\left(2x+1\right)\times 3
\left(x-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1=4x^{2}+4x+1+\left(x-1\right)\left(2x+1\right)\times 3
\left(2x+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-2x+1=4x^{2}+4x+1+\left(2x^{2}-x-1\right)\times 3
x-1 ਨੂੰ 2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
x^{2}-2x+1=4x^{2}+4x+1+6x^{2}-3x-3
2x^{2}-x-1 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-2x+1=10x^{2}+4x+1-3x-3
10x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ 6x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x+1=10x^{2}+x+1-3
x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x+1=10x^{2}+x-2
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x+1-10x^{2}=x-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-9x^{2}-2x+1=x-2
-9x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -10x^{2} ਨੂੰ ਮਿਲਾਓ।
-9x^{2}-2x+1-x=-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-9x^{2}-3x+1=-2
-3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-9x^{2}-3x=-2-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
-9x^{2}-3x=-3
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-9x^{2}-3x}{-9}=-\frac{3}{-9}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{3}{-9}\right)x=-\frac{3}{-9}
-9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{3}x=-\frac{3}{-9}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-3}{-9} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{3}x=\frac{1}{3}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-3}{-9} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{6} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{3}+\frac{1}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{13}{36}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{3} ਨੂੰ \frac{1}{36} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{1}{6}\right)^{2}=\frac{13}{36}
ਫੈਕਟਰ x^{2}+\frac{1}{3}x+\frac{1}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{6}=\frac{\sqrt{13}}{6} x+\frac{1}{6}=-\frac{\sqrt{13}}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{13}-1}{6} x=\frac{-\sqrt{13}-1}{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{6} ਨੂੰ ਘਟਾਓ।