ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x\left(9-3x\right)=15-9x
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9x, ਜੋ 9,9x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
9x-3x^{2}=15-9x
x ਨੂੰ 9-3x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x-3x^{2}-15=-9x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ।
9x-3x^{2}-15+9x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9x ਜੋੜੋ।
18x-3x^{2}-15=0
18x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x ਅਤੇ 9x ਨੂੰ ਮਿਲਾਓ।
-3x^{2}+18x-15=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -3 ਨੂੰ a ਲਈ, 18 ਨੂੰ b ਲਈ, ਅਤੇ -15 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
18 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-18±\sqrt{324+12\left(-15\right)}}{2\left(-3\right)}
-4 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-18±\sqrt{324-180}}{2\left(-3\right)}
12 ਨੂੰ -15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-18±\sqrt{144}}{2\left(-3\right)}
324 ਨੂੰ -180 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-18±12}{2\left(-3\right)}
144 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-18±12}{-6}
2 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{6}{-6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±12}{-6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -18 ਨੂੰ 12 ਵਿੱਚ ਜੋੜੋ।
x=1
-6 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{30}{-6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-18±12}{-6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -18 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾਓ।
x=5
-30 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=1 x=5
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x\left(9-3x\right)=15-9x
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9x, ਜੋ 9,9x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
9x-3x^{2}=15-9x
x ਨੂੰ 9-3x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x-3x^{2}+9x=15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9x ਜੋੜੋ।
18x-3x^{2}=15
18x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x ਅਤੇ 9x ਨੂੰ ਮਿਲਾਓ।
-3x^{2}+18x=15
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-3x^{2}+18x}{-3}=\frac{15}{-3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{18}{-3}x=\frac{15}{-3}
-3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-6x=\frac{15}{-3}
18 ਨੂੰ -3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-6x=-5
15 ਨੂੰ -3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
-6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -3 ਨਿਕਲੇ। ਫੇਰ, -3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-6x+9=-5+9
-3 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-6x+9=4
-5 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(x-3\right)^{2}=4
ਫੈਕਟਰ x^{2}-6x+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-3=2 x-3=-2
ਸਪਸ਼ਟ ਕਰੋ।
x=5 x=1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।