ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. m
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(9m^{-4}\right)^{1}\times \frac{1}{m^{2}}
ਐਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਸਰਲ ਬਣਾਉਣ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋਂ।
9^{1}\left(m^{-4}\right)^{1}\times \frac{1}{1}\times \frac{1}{m^{2}}
ਦੋ ਜਾਂ ਵੱਧ ਨੰਬਰਾਂ ਦੇ ਗੁਣਨਫਲ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਲਈ, ਹਰ ਨੰਬਰ ਨੂੰ ਪਾਵਰ ਤੱਕ ਵਧਾਓ ਅਤੇ ਉਹਨਾਂ ਦਾ ਗੁਣਨਫਲ ਕੱਢੋ।
9^{1}\times \frac{1}{1}\left(m^{-4}\right)^{1}\times \frac{1}{m^{2}}
ਗੁਣਨ ਦੀ ਕਮਿਉਟੇਟਿਵ ਪ੍ਰੋਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰੋ।
9^{1}\times \frac{1}{1}m^{-4}m^{2\left(-1\right)}
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ।
9^{1}\times \frac{1}{1}m^{-4}m^{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
9^{1}\times \frac{1}{1}m^{-4-2}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
9^{1}\times \frac{1}{1}m^{-6}
-4 ਅਤੇ -2 ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
9\times \frac{1}{1}m^{-6}
9 ਨੂੰ 1 ਪਾਵਰ ਤੱਕ ਵਧਾਓ।
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{9}{1}m^{-4-2})
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਘਟਾ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}m}(9m^{-6})
ਗਿਣਤੀ ਕਰੋ।
-6\times 9m^{-6-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
-54m^{-7}
ਗਿਣਤੀ ਕਰੋ।