ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

5\times 8+\left(2\times 6+9\right)x^{2}=12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
40+\left(2\times 6+9\right)x^{2}=12
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+\left(12+9\right)x^{2}=12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+21x^{2}=12
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
21x^{2}=12-40
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 40 ਨੂੰ ਘਟਾ ਦਿਓ।
21x^{2}=-28
-28 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਵਿੱਚੋਂ 40 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}=\frac{-28}{21}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 21 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=-\frac{4}{3}
7 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-28}{21} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5\times 8+\left(2\times 6+9\right)x^{2}=12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
40+\left(2\times 6+9\right)x^{2}=12
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+\left(12+9\right)x^{2}=12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+21x^{2}=12
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
40+21x^{2}-12=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
28+21x^{2}=0
28 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 40 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
21x^{2}+28=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
x=\frac{0±\sqrt{0^{2}-4\times 21\times 28}}{2\times 21}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 21 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ 28 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 21\times 28}}{2\times 21}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-84\times 28}}{2\times 21}
-4 ਨੂੰ 21 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{-2352}}{2\times 21}
-84 ਨੂੰ 28 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±28\sqrt{3}i}{2\times 21}
-2352 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±28\sqrt{3}i}{42}
2 ਨੂੰ 21 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{3}i}{3}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±28\sqrt{3}i}{42} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{2\sqrt{3}i}{3}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±28\sqrt{3}i}{42} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।