x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=-\frac{2\sqrt{3}i}{3}\approx -0-1.154700538i
x=\frac{2\sqrt{3}i}{3}\approx 1.154700538i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
5\times 8+\left(2\times 6+9\right)x^{2}=12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
40+\left(2\times 6+9\right)x^{2}=12
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+\left(12+9\right)x^{2}=12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+21x^{2}=12
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
21x^{2}=12-40
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 40 ਨੂੰ ਘਟਾ ਦਿਓ।
21x^{2}=-28
-28 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਵਿੱਚੋਂ 40 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}=\frac{-28}{21}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 21 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=-\frac{4}{3}
7 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-28}{21} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5\times 8+\left(2\times 6+9\right)x^{2}=12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
40+\left(2\times 6+9\right)x^{2}=12
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+\left(12+9\right)x^{2}=12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
40+21x^{2}=12
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
40+21x^{2}-12=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
28+21x^{2}=0
28 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 40 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
21x^{2}+28=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
x=\frac{0±\sqrt{0^{2}-4\times 21\times 28}}{2\times 21}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 21 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ 28 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 21\times 28}}{2\times 21}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-84\times 28}}{2\times 21}
-4 ਨੂੰ 21 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{-2352}}{2\times 21}
-84 ਨੂੰ 28 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±28\sqrt{3}i}{2\times 21}
-2352 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±28\sqrt{3}i}{42}
2 ਨੂੰ 21 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{3}i}{3}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±28\sqrt{3}i}{42} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{2\sqrt{3}i}{3}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±28\sqrt{3}i}{42} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}