ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{5}{6}\times 3+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
\frac{5}{6} ਨੂੰ 3-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{5\times 3}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
\frac{5}{6}\times 3 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{15}{6}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{5}{2}+\frac{5}{6}\left(-1\right)x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{15}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}\left(x-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{5}{6} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{5}{6} ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x-\frac{1}{2}\left(-4\right)\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{1}{2} ਨੂੰ x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{-\left(-4\right)}{2}\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{1}{2}\left(-4\right) ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+\frac{4}{2}\geq \frac{1}{2}\left(2x-3\right)-x
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ -4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{5}{2}-\frac{5}{6}x-\frac{1}{2}x+2\geq \frac{1}{2}\left(2x-3\right)-x
4 ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 2 ਨਿਕਲੇ।
\frac{5}{2}-\frac{4}{3}x+2\geq \frac{1}{2}\left(2x-3\right)-x
-\frac{4}{3}x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{5}{6}x ਅਤੇ -\frac{1}{2}x ਨੂੰ ਮਿਲਾਓ।
\frac{5}{2}-\frac{4}{3}x+\frac{4}{2}\geq \frac{1}{2}\left(2x-3\right)-x
2 ਨੂੰ \frac{4}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{5+4}{2}-\frac{4}{3}x\geq \frac{1}{2}\left(2x-3\right)-x
ਕਿਉਂਕਿ \frac{5}{2} ਅਤੇ \frac{4}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{9}{2}-\frac{4}{3}x\geq \frac{1}{2}\left(2x-3\right)-x
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
\frac{9}{2}-\frac{4}{3}x\geq \frac{1}{2}\times 2x+\frac{1}{2}\left(-3\right)-x
\frac{1}{2} ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{9}{2}-\frac{4}{3}x\geq x+\frac{1}{2}\left(-3\right)-x
2 ਅਤੇ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{9}{2}-\frac{4}{3}x\geq x+\frac{-3}{2}-x
\frac{-3}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{2} ਅਤੇ -3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{9}{2}-\frac{4}{3}x\geq x-\frac{3}{2}-x
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-3}{2} ਨੂੰ -\frac{3}{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\frac{9}{2}-\frac{4}{3}x\geq -\frac{3}{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-\frac{4}{3}x\geq -\frac{3}{2}-\frac{9}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{9}{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{4}{3}x\geq \frac{-3-9}{2}
ਕਿਉਂਕਿ -\frac{3}{2} ਅਤੇ \frac{9}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-\frac{4}{3}x\geq \frac{-12}{2}
-12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{4}{3}x\geq -6
-12 ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -6 ਨਿਕਲੇ।
x\leq -6\left(-\frac{3}{4}\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -\frac{3}{4}, -\frac{4}{3} ਦੇ ਦੁਪਾਸੜ ਨਾਲ ਗੁਣਾ ਕਰੋ। ਕਿਉਂਕਿ -\frac{4}{3} ਰਿਣਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਬਦਲ ਜਾਂਦੀ ਹੈ।
x\leq \frac{-6\left(-3\right)}{4}
-6\left(-\frac{3}{4}\right) ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
x\leq \frac{18}{4}
18 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਅਤੇ -3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x\leq \frac{9}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{18}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।