ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 25 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
65 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4225 ਪ੍ਰਾਪਤ ਕਰੋ।
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ \frac{5}{4} ਨੂੰ a ਲਈ, -\frac{1}{2} ਨੂੰ b ਲਈ, ਅਤੇ -4225 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-4225\right)}}{2\times \frac{5}{4}}
-4 ਨੂੰ \frac{5}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+21125}}{2\times \frac{5}{4}}
-5 ਨੂੰ -4225 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{84501}{4}}}{2\times \frac{5}{4}}
\frac{1}{4} ਨੂੰ 21125 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-\frac{1}{2}\right)±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
\frac{84501}{4} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
-\frac{1}{2} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{1}{2} ਹੈ।
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}}
2 ਨੂੰ \frac{5}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{3\sqrt{9389}+1}{2\times \frac{5}{2}}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। \frac{1}{2} ਨੂੰ \frac{3\sqrt{9389}}{2} ਵਿੱਚ ਜੋੜੋ।
x=\frac{3\sqrt{9389}+1}{5}
\frac{1+3\sqrt{9389}}{2} ਨੂੰ \frac{5}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1+3\sqrt{9389}}{2}ਨੂੰ \frac{5}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{1-3\sqrt{9389}}{2\times \frac{5}{2}}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। \frac{1}{2} ਵਿੱਚੋਂ \frac{3\sqrt{9389}}{2} ਨੂੰ ਘਟਾਓ।
x=\frac{1-3\sqrt{9389}}{5}
\frac{1-3\sqrt{9389}}{2} ਨੂੰ \frac{5}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1-3\sqrt{9389}}{2}ਨੂੰ \frac{5}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 25 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
65 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4225 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{5}{4}x^{2}-\frac{1}{2}x=4225
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4225 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=\frac{4225}{\frac{5}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \frac{5}{4} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=\frac{4225}{\frac{5}{4}}
\frac{5}{4} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \frac{5}{4} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{2}{5}x=\frac{4225}{\frac{5}{4}}
-\frac{1}{2} ਨੂੰ \frac{5}{4} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -\frac{1}{2}ਨੂੰ \frac{5}{4} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{2}{5}x=3380
4225 ਨੂੰ \frac{5}{4} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 4225ਨੂੰ \frac{5}{4} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=3380+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{5} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{5} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{2}{5}x+\frac{1}{25}=3380+\frac{1}{25}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{5} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{84501}{25}
3380 ਨੂੰ \frac{1}{25} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{1}{5}\right)^{2}=\frac{84501}{25}
ਫੈਕਟਰ x^{2}-\frac{2}{5}x+\frac{1}{25}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{84501}{25}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{5}=\frac{3\sqrt{9389}}{5} x-\frac{1}{5}=-\frac{3\sqrt{9389}}{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{5} ਨੂੰ ਜੋੜੋ।