\frac{ 4 { m }^{ 2 } -16 { n }^{ 2 } -4n+2m }{ }
ਫੈਕਟਰ
2\left(m-2n\right)\left(2m+4n+1\right)
ਮੁਲਾਂਕਣ ਕਰੋ
2\left(m-2n\right)\left(2m+4n+1\right)
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2\left(2m^{2}-8n^{2}-2n+m\right)
2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
2m^{2}+m-8n^{2}-2n
2m^{2}-8n^{2}-2n+m 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 2m^{2}-8n^{2}-2n+m ਨੂੰ m ਵੇਰੀਏਬਲ ਦੇ ਉੱਤੇ ਪੋਲੀਨੋਮਿਅਨ ਵਜੋਂ ਮੰਨੋ।
\left(m-2n\right)\left(2m+4n+1\right)
km^{p}+q ਰੂਪ ਵਿੱਚ ਇੱਕ ਫੈਕਟਰ ਲੱਭੋ, ਜਿੱਥੇ km^{p} ਉੱਚਤਮ ਪਾਵਰ 2m^{2} ਵਾਲੇ ਇੱਕ ਮੋਨੋਮਿਅਲ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ ਅਤੇ q ਸਥਿਰ ਫੈਕਟਰ -8n^{2}-2n ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ। ਅਜਿਹਾ ਇੱਕ ਫੈਕਟਰ m-2n ਹੈ। ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਇਸ ਫੈਕਟਰ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਇਸਦੇ ਫੈਕਟਰ ਬਣਾਓ।
2\left(m-2n\right)\left(2m+4n+1\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
4m^{2}-16n^{2}-4n+2m
ਇੱਕ ਨਾਲ ਤਕਸੀਮ ਕੀਤੇ ਕਿਸੇ ਵੀ ਅੰਕ ਦਾ ਨਤੀਜਾ ਉਹੀ ਅੰਕ ਨਿਕਲਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}