x ਲਈ ਹਲ ਕਰੋ
x=-31
x=40
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Quadratic Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac{ 2x }{ x-8 } + \frac{ 3x }{ x+5 } = 5 \frac { 1 } { 6 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(6x+30\right)\times 2x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -5,8 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6\left(x-8\right)\left(x+5\right), ਜੋ x-8,x+5,6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(12x+60\right)x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
6x+30 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+60x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
12x+60 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+60x+\left(18x-144\right)x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
6x-48 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+60x+18x^{2}-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
18x-144 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
30x^{2}+60x-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
30x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ 18x^{2} ਨੂੰ ਮਿਲਾਓ।
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
-84x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 60x ਅਤੇ -144x ਨੂੰ ਮਿਲਾਓ।
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(30+1\right)
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\times 31
31 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
30x^{2}-84x=\left(x^{2}-3x-40\right)\times 31
x-8 ਨੂੰ x+5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
30x^{2}-84x=31x^{2}-93x-1240
x^{2}-3x-40 ਨੂੰ 31 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
30x^{2}-84x-31x^{2}=-93x-1240
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 31x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-84x=-93x-1240
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30x^{2} ਅਤੇ -31x^{2} ਨੂੰ ਮਿਲਾਓ।
-x^{2}-84x+93x=-1240
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 93x ਜੋੜੋ।
-x^{2}+9x=-1240
9x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -84x ਅਤੇ 93x ਨੂੰ ਮਿਲਾਓ।
-x^{2}+9x+1240=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1240 ਜੋੜੋ।
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\times 1240}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 9 ਨੂੰ b ਲਈ, ਅਤੇ 1240 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-9±\sqrt{81-4\left(-1\right)\times 1240}}{2\left(-1\right)}
9 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-9±\sqrt{81+4\times 1240}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-9±\sqrt{81+4960}}{2\left(-1\right)}
4 ਨੂੰ 1240 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-9±\sqrt{5041}}{2\left(-1\right)}
81 ਨੂੰ 4960 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-9±71}{2\left(-1\right)}
5041 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-9±71}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{62}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-9±71}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -9 ਨੂੰ 71 ਵਿੱਚ ਜੋੜੋ।
x=-31
62 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{80}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-9±71}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -9 ਵਿੱਚੋਂ 71 ਨੂੰ ਘਟਾਓ।
x=40
-80 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-31 x=40
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(6x+30\right)\times 2x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -5,8 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6\left(x-8\right)\left(x+5\right), ਜੋ x-8,x+5,6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(12x+60\right)x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
6x+30 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+60x+\left(6x-48\right)\times 3x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
12x+60 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+60x+\left(18x-144\right)x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
6x-48 ਨੂੰ 3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+60x+18x^{2}-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
18x-144 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
30x^{2}+60x-144x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
30x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ 18x^{2} ਨੂੰ ਮਿਲਾਓ।
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(5\times 6+1\right)
-84x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 60x ਅਤੇ -144x ਨੂੰ ਮਿਲਾਓ।
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\left(30+1\right)
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
30x^{2}-84x=\left(x-8\right)\left(x+5\right)\times 31
31 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
30x^{2}-84x=\left(x^{2}-3x-40\right)\times 31
x-8 ਨੂੰ x+5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
30x^{2}-84x=31x^{2}-93x-1240
x^{2}-3x-40 ਨੂੰ 31 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
30x^{2}-84x-31x^{2}=-93x-1240
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 31x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-84x=-93x-1240
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30x^{2} ਅਤੇ -31x^{2} ਨੂੰ ਮਿਲਾਓ।
-x^{2}-84x+93x=-1240
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 93x ਜੋੜੋ।
-x^{2}+9x=-1240
9x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -84x ਅਤੇ 93x ਨੂੰ ਮਿਲਾਓ।
\frac{-x^{2}+9x}{-1}=-\frac{1240}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{9}{-1}x=-\frac{1240}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-9x=-\frac{1240}{-1}
9 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-9x=1240
-1240 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=1240+\left(-\frac{9}{2}\right)^{2}
-9, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{9}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{9}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-9x+\frac{81}{4}=1240+\frac{81}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{9}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-9x+\frac{81}{4}=\frac{5041}{4}
1240 ਨੂੰ \frac{81}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{9}{2}\right)^{2}=\frac{5041}{4}
ਫੈਕਟਰ x^{2}-9x+\frac{81}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{5041}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{9}{2}=\frac{71}{2} x-\frac{9}{2}=-\frac{71}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=40 x=-31
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{9}{2} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}