b ਲਈ ਹਲ ਕਰੋ
b=\frac{\left(a+18\right)^{2}}{5}
a\leq -18
a ਲਈ ਹਲ ਕਰੋ
a=-\left(\sqrt{5b}+18\right)
b\geq 0
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 2+\sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2+\sqrt{5}}{2-\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
2 ਦਾ ਵਰਗ ਕਰੋ। \sqrt{5} ਦਾ ਵਰਗ ਕਰੋ।
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
\left(2+\sqrt{5}\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2+\sqrt{5} ਅਤੇ 2+\sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
\left(2+\sqrt{5}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\frac{4+4\sqrt{5}+5}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
\frac{9+4\sqrt{5}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
-9-4\sqrt{5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
ਜਿਸ ਨੂੰ ਵੀ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਇਸਦਾ ਵਿਪਰੀਤ ਨਤੀਜਾ ਦਿੰਦਾ ਹੈ। 9+4\sqrt{5} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}=a+\sqrt{5b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 2-\sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2-\sqrt{5}}{2+\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}=a+\sqrt{5b}
\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}=a+\sqrt{5b}
2 ਦਾ ਵਰਗ ਕਰੋ। \sqrt{5} ਦਾ ਵਰਗ ਕਰੋ।
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}=a+\sqrt{5b}
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
\left(2-\sqrt{5}\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2-\sqrt{5} ਅਤੇ 2-\sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
\left(2-\sqrt{5}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+5}{-1}=a+\sqrt{5b}
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
-9-4\sqrt{5}+\frac{9-4\sqrt{5}}{-1}=a+\sqrt{5b}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 5 ਨੂੰ ਜੋੜੋ।
-9-4\sqrt{5}-9+4\sqrt{5}=a+\sqrt{5b}
ਜਿਸ ਨੂੰ ਵੀ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਇਸਦਾ ਵਿਪਰੀਤ ਨਤੀਜਾ ਦਿੰਦਾ ਹੈ। 9-4\sqrt{5} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-18-4\sqrt{5}+4\sqrt{5}=a+\sqrt{5b}
-18 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -9 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
-18=a+\sqrt{5b}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4\sqrt{5} ਅਤੇ 4\sqrt{5} ਨੂੰ ਮਿਲਾਓ।
a+\sqrt{5b}=-18
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\sqrt{5b}=-18-a
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
5b=\left(a+18\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\frac{5b}{5}=\frac{\left(a+18\right)^{2}}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{\left(a+18\right)^{2}}{5}
5 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 5 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}