a ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
x\neq 2\text{ and }x\neq 0\text{ and }x\neq -2
a ਲਈ ਹਲ ਕਰੋ
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
x\neq 0\text{ and }|x|\neq 2
x ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}x=-\frac{\sqrt{a^{2}-6a+25}+a+1}{3-a}\text{, }&a\neq 3\text{ and }a\neq 0\\x=\frac{\sqrt{a^{2}-6a+25}-a-1}{3-a}\text{, }&a\neq 3\\x=1\text{, }&a=3\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\left(2+x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+2\right), ਜੋ 2-x,x+2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(-2-x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
2+x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-4-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
-2-x ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-4-2x+\left(x^{2}-4\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
x-2 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-4-2x-3x^{2}+12=\left(x-2\right)\left(-a\right)x
x^{2}-4 ਨੂੰ -3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8-2x-3x^{2}=\left(x-2\right)\left(-a\right)x
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4 ਅਤੇ 12 ਨੂੰ ਜੋੜੋ।
8-2x-3x^{2}=\left(x\left(-a\right)-2\left(-a\right)\right)x
x-2 ਨੂੰ -a ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8-2x-3x^{2}=\left(x\left(-a\right)+2a\right)x
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
8-2x-3x^{2}=\left(-a\right)x^{2}+2ax
x\left(-a\right)+2a ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\left(-a\right)x^{2}+2ax=8-2x-3x^{2}
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-ax^{2}+2ax=-3x^{2}-2x+8
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
\left(-x^{2}+2x\right)a=-3x^{2}-2x+8
a ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(2x-x^{2}\right)a=8-2x-3x^{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x^{2}+2x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
-x^{2}+2x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -x^{2}+2x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
-\left(-4+3x\right)\left(2+x\right) ਨੂੰ -x^{2}+2x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-\left(2+x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+2\right), ਜੋ 2-x,x+2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(-2-x\right)\times 2+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
2+x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-4-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
-2-x ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-4-2x+\left(x^{2}-4\right)\left(-3\right)=\left(x-2\right)\left(-a\right)x
x-2 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-4-2x-3x^{2}+12=\left(x-2\right)\left(-a\right)x
x^{2}-4 ਨੂੰ -3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8-2x-3x^{2}=\left(x-2\right)\left(-a\right)x
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4 ਅਤੇ 12 ਨੂੰ ਜੋੜੋ।
8-2x-3x^{2}=\left(x\left(-a\right)-2\left(-a\right)\right)x
x-2 ਨੂੰ -a ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8-2x-3x^{2}=\left(x\left(-a\right)+2a\right)x
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
8-2x-3x^{2}=\left(-a\right)x^{2}+2ax
x\left(-a\right)+2a ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\left(-a\right)x^{2}+2ax=8-2x-3x^{2}
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-ax^{2}+2ax=-3x^{2}-2x+8
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
\left(-x^{2}+2x\right)a=-3x^{2}-2x+8
a ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(2x-x^{2}\right)a=8-2x-3x^{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(2x-x^{2}\right)a}{2x-x^{2}}=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x^{2}+2x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=-\frac{\left(3x-4\right)\left(x+2\right)}{2x-x^{2}}
-x^{2}+2x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -x^{2}+2x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=-\frac{\left(3x-4\right)\left(x+2\right)}{x\left(2-x\right)}
-\left(-4+3x\right)\left(2+x\right) ਨੂੰ -x^{2}+2x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}