x ਲਈ ਹਲ ਕਰੋ
x=-3
x=\frac{2}{3}\approx 0.666666667
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3\left(x-2\right)\left(x+2\right), ਜੋ 2-x,x-2,3x^{2}-12 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
-3x+6 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
6-3x-3x^{2}=3x+6-\left(6-x\right)
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਅਤੇ 12 ਨੂੰ ਜੋੜੋ।
6-3x-3x^{2}=3x+6-6+x
6-x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
6-3x-3x^{2}=3x+x
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
6-3x-3x^{2}=4x
4x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
6-3x-3x^{2}-4x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
6-7x-3x^{2}=0
-7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-3x^{2}-7x+6=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-7 ab=-3\times 6=-18
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -3x^{2}+ax+bx+6 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-18 2,-9 3,-6
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -18 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-18=-17 2-9=-7 3-6=-3
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=2 b=-9
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -7 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-3x^{2}+2x\right)+\left(-9x+6\right)
-3x^{2}-7x+6 ਨੂੰ \left(-3x^{2}+2x\right)+\left(-9x+6\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-x\left(3x-2\right)-3\left(3x-2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(3x-2\right)\left(-x-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 3x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=\frac{2}{3} x=-3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 3x-2=0 ਅਤੇ -x-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3\left(x-2\right)\left(x+2\right), ਜੋ 2-x,x-2,3x^{2}-12 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
-3x+6 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
6-3x-3x^{2}=3x+6-\left(6-x\right)
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਅਤੇ 12 ਨੂੰ ਜੋੜੋ।
6-3x-3x^{2}=3x+6-6+x
6-x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
6-3x-3x^{2}=3x+x
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
6-3x-3x^{2}=4x
4x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
6-3x-3x^{2}-4x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
6-7x-3x^{2}=0
-7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-3x^{2}-7x+6=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -3 ਨੂੰ a ਲਈ, -7 ਨੂੰ b ਲਈ, ਅਤੇ 6 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 6}}{2\left(-3\right)}
-7 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-7\right)±\sqrt{49+12\times 6}}{2\left(-3\right)}
-4 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\left(-3\right)}
12 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-7\right)±\sqrt{121}}{2\left(-3\right)}
49 ਨੂੰ 72 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-7\right)±11}{2\left(-3\right)}
121 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{7±11}{2\left(-3\right)}
-7 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 7 ਹੈ।
x=\frac{7±11}{-6}
2 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{18}{-6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{7±11}{-6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 7 ਨੂੰ 11 ਵਿੱਚ ਜੋੜੋ।
x=-3
18 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{4}{-6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{7±11}{-6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 7 ਵਿੱਚੋਂ 11 ਨੂੰ ਘਟਾਓ।
x=\frac{2}{3}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-4}{-6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-3 x=\frac{2}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-6-3x+3\left(x-2\right)\left(x+2\right)\left(-1\right)=3x+6-\left(6-x\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3\left(x-2\right)\left(x+2\right), ਜੋ 2-x,x-2,3x^{2}-12 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-6-3x-3\left(x-2\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-6-3x+\left(-3x+6\right)\left(x+2\right)=3x+6-\left(6-x\right)
-3 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-6-3x-3x^{2}+12=3x+6-\left(6-x\right)
-3x+6 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
6-3x-3x^{2}=3x+6-\left(6-x\right)
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਅਤੇ 12 ਨੂੰ ਜੋੜੋ।
6-3x-3x^{2}=3x+6-6+x
6-x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
6-3x-3x^{2}=3x+x
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
6-3x-3x^{2}=4x
4x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
6-3x-3x^{2}-4x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
6-7x-3x^{2}=0
-7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-7x-3x^{2}=-6
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-3x^{2}-7x=-6
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-3x^{2}-7x}{-3}=-\frac{6}{-3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{6}{-3}
-3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{7}{3}x=-\frac{6}{-3}
-7 ਨੂੰ -3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{7}{3}x=2
-6 ਨੂੰ -3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=2+\left(\frac{7}{6}\right)^{2}
\frac{7}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{7}{6} ਨਿਕਲੇ। ਫੇਰ, \frac{7}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{7}{3}x+\frac{49}{36}=2+\frac{49}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{7}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{121}{36}
2 ਨੂੰ \frac{49}{36} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{7}{6}\right)^{2}=\frac{121}{36}
ਫੈਕਟਰ x^{2}+\frac{7}{3}x+\frac{49}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{7}{6}=\frac{11}{6} x+\frac{7}{6}=-\frac{11}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{2}{3} x=-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{7}{6} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}