ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{2}x\times 2x+2xx=2\times 51
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2x, ਜੋ 2,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
xx+2xx=2\times 51
2 ਅਤੇ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
x^{2}+2xx=2\times 51
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+2x^{2}=2\times 51
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
3x^{2}=2\times 51
3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ 2x^{2} ਨੂੰ ਮਿਲਾਓ।
3x^{2}=102
102 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 51 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}=\frac{102}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=34
102 ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 34 ਨਿਕਲੇ।
x=\sqrt{34} x=-\sqrt{34}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{1}{2}x\times 2x+2xx=2\times 51
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2x, ਜੋ 2,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
xx+2xx=2\times 51
2 ਅਤੇ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
x^{2}+2xx=2\times 51
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}+2x^{2}=2\times 51
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
3x^{2}=2\times 51
3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ 2x^{2} ਨੂੰ ਮਿਲਾਓ।
3x^{2}=102
102 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 51 ਨੂੰ ਗੁਣਾ ਕਰੋ।
3x^{2}-102=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 102 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-102\right)}}{2\times 3}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 3 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -102 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 3\left(-102\right)}}{2\times 3}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-12\left(-102\right)}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{1224}}{2\times 3}
-12 ਨੂੰ -102 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±6\sqrt{34}}{2\times 3}
1224 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±6\sqrt{34}}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\sqrt{34}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±6\sqrt{34}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\sqrt{34}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±6\sqrt{34}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\sqrt{34} x=-\sqrt{34}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।