ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-x^{2}=83176\times 10^{-5}x
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-x^{2}=83176\times \frac{1}{100000}x
10 ਨੂੰ -5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{100000} ਪ੍ਰਾਪਤ ਕਰੋ।
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 83176 ਅਤੇ \frac{1}{100000} ਨੂੰ ਗੁਣਾ ਕਰੋ।
-x^{2}-\frac{10397}{12500}x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{10397}{12500}x ਨੂੰ ਘਟਾ ਦਿਓ।
x\left(-x-\frac{10397}{12500}\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=-\frac{10397}{12500}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ -x-\frac{10397}{12500}=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=-\frac{10397}{12500}
ਵੇਰੀਏਬਲ x, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
-x^{2}=83176\times 10^{-5}x
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-x^{2}=83176\times \frac{1}{100000}x
10 ਨੂੰ -5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{100000} ਪ੍ਰਾਪਤ ਕਰੋ।
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 83176 ਅਤੇ \frac{1}{100000} ਨੂੰ ਗੁਣਾ ਕਰੋ।
-x^{2}-\frac{10397}{12500}x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{10397}{12500}x ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-\frac{10397}{12500}\right)±\sqrt{\left(-\frac{10397}{12500}\right)^{2}}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -\frac{10397}{12500} ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-\frac{10397}{12500}\right)±\frac{10397}{12500}}{2\left(-1\right)}
\left(-\frac{10397}{12500}\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{2\left(-1\right)}
-\frac{10397}{12500} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{10397}{12500} ਹੈ।
x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\frac{10397}{6250}}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{10397}{12500} ਨੂੰ \frac{10397}{12500} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=-\frac{10397}{12500}
\frac{10397}{6250} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{0}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{\frac{10397}{12500}±\frac{10397}{12500}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ \frac{10397}{12500} ਵਿੱਚੋਂ \frac{10397}{12500} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=0
0 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{10397}{12500} x=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=-\frac{10397}{12500}
ਵੇਰੀਏਬਲ x, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
-x^{2}=83176\times 10^{-5}x
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-x^{2}=83176\times \frac{1}{100000}x
10 ਨੂੰ -5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{100000} ਪ੍ਰਾਪਤ ਕਰੋ।
-x^{2}=\frac{10397}{12500}x
\frac{10397}{12500} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 83176 ਅਤੇ \frac{1}{100000} ਨੂੰ ਗੁਣਾ ਕਰੋ।
-x^{2}-\frac{10397}{12500}x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{10397}{12500}x ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-x^{2}-\frac{10397}{12500}x}{-1}=\frac{0}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{\frac{10397}{12500}}{-1}\right)x=\frac{0}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{10397}{12500}x=\frac{0}{-1}
-\frac{10397}{12500} ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{10397}{12500}x=0
0 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{10397}{12500}x+\left(\frac{10397}{25000}\right)^{2}=\left(\frac{10397}{25000}\right)^{2}
\frac{10397}{12500}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{10397}{25000} ਨਿਕਲੇ। ਫੇਰ, \frac{10397}{25000} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}=\frac{108097609}{625000000}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{10397}{25000} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(x+\frac{10397}{25000}\right)^{2}=\frac{108097609}{625000000}
ਫੈਕਟਰ x^{2}+\frac{10397}{12500}x+\frac{108097609}{625000000}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{10397}{25000}\right)^{2}}=\sqrt{\frac{108097609}{625000000}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{10397}{25000}=\frac{10397}{25000} x+\frac{10397}{25000}=-\frac{10397}{25000}
ਸਪਸ਼ਟ ਕਰੋ।
x=0 x=-\frac{10397}{12500}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{10397}{25000} ਨੂੰ ਘਟਾਓ।
x=-\frac{10397}{12500}
ਵੇਰੀਏਬਲ x, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।