ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-3\right)\left(x+6\right), ਜੋ x+6,x-3,x^{2}+3x-18 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x-3 ਅਤੇ x-3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}-6x+9+4x-12=x^{2}
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x+9-12=x^{2}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x-3=x^{2}
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-2x-3-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x-3=0
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
a+b=-2 ab=-3
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ x^{2}-2x-3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-3 b=1
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(x-3\right)\left(x+1\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(x+a\right)\left(x+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x=3 x=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-3=0 ਅਤੇ x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=-1
ਵੇਰੀਏਬਲ x, 3 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-3\right)\left(x+6\right), ਜੋ x+6,x-3,x^{2}+3x-18 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x-3 ਅਤੇ x-3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}-6x+9+4x-12=x^{2}
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x+9-12=x^{2}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x-3=x^{2}
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-2x-3-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x-3=0
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
a+b=-2 ab=1\left(-3\right)=-3
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx-3 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-3 b=1
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 ਨੂੰ \left(x^{2}-3x\right)+\left(x-3\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-3\right)+x-3
x^{2}-3x ਵਿੱਚੋਂ x ਫੈਕਟਰ ਕੱਢੋ।
\left(x-3\right)\left(x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=3 x=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-3=0 ਅਤੇ x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=-1
ਵੇਰੀਏਬਲ x, 3 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-3\right)\left(x+6\right), ਜੋ x+6,x-3,x^{2}+3x-18 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x-3 ਅਤੇ x-3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}-6x+9+4x-12=x^{2}
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x+9-12=x^{2}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x-3=x^{2}
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-2x-3-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x-3=0
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -2 ਨੂੰ b ਲਈ, ਅਤੇ -3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
-2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-4 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
4 ਨੂੰ 12 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-2\right)±4}{2}
16 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{2±4}{2}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
x=\frac{6}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±4}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 2 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
x=3
6 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{2}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±4}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 2 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾਓ।
x=-1
-2 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=3 x=-1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=-1
ਵੇਰੀਏਬਲ x, 3 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
\left(x-3\right)\left(x-3\right)+\left(x+6\right)\left(x-2\right)=x^{2}
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -6,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-3\right)\left(x+6\right), ਜੋ x+6,x-3,x^{2}+3x-18 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(x-3\right)^{2}+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x-3 ਅਤੇ x-3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}-6x+9+\left(x+6\right)\left(x-2\right)=x^{2}
\left(x-3\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-6x+9+x^{2}+4x-12=x^{2}
x+6 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
2x^{2}-6x+9+4x-12=x^{2}
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x+9-12=x^{2}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
2x^{2}-2x-3=x^{2}
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-2x-3-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-2x-3=0
x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}-2x=3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}-2x+1=3+1
-2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ। ਫੇਰ, -1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-2x+1=4
3 ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(x-1\right)^{2}=4
ਫੈਕਟਰ x^{2}-2x+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-1=2 x-1=-2
ਸਪਸ਼ਟ ਕਰੋ।
x=3 x=-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਨੂੰ ਜੋੜੋ।
x=-1
ਵੇਰੀਏਬਲ x, 3 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।