ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x-1=2x\left(-x+2\right)-x+2
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x+2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x-1=-2x^{2}+4x-x+2
2x ਨੂੰ -x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x-1=-2x^{2}+3x+2
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
x-1+2x^{2}=3x+2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x^{2} ਜੋੜੋ।
x-1+2x^{2}-3x=2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x-1+2x^{2}=2
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
-2x-1+2x^{2}-2=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
-2x-3+2x^{2}=0
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-2x-3=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -2 ਨੂੰ b ਲਈ, ਅਤੇ -3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-3\right)}}{2\times 2}
-2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-3\right)}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{4+24}}{2\times 2}
-8 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-2\right)±\sqrt{28}}{2\times 2}
4 ਨੂੰ 24 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-2\right)±2\sqrt{7}}{2\times 2}
28 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{2±2\sqrt{7}}{2\times 2}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
x=\frac{2±2\sqrt{7}}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{7}+2}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±2\sqrt{7}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 2 ਨੂੰ 2\sqrt{7} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{7}+1}{2}
2+2\sqrt{7} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{2-2\sqrt{7}}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{2±2\sqrt{7}}{4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 2 ਵਿੱਚੋਂ 2\sqrt{7} ਨੂੰ ਘਟਾਓ।
x=\frac{1-\sqrt{7}}{2}
2-2\sqrt{7} ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x-1=2x\left(-x+2\right)-x+2
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -x+2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x-1=-2x^{2}+4x-x+2
2x ਨੂੰ -x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x-1=-2x^{2}+3x+2
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
x-1+2x^{2}=3x+2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2x^{2} ਜੋੜੋ।
x-1+2x^{2}-3x=2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x-1+2x^{2}=2
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
-2x+2x^{2}=2+1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਜੋੜੋ।
-2x+2x^{2}=3
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
2x^{2}-2x=3
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}-2x}{2}=\frac{3}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{2}{2}\right)x=\frac{3}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-x=\frac{3}{2}
-2 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{2}\right)^{2}
-1, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-x+\frac{1}{4}=\frac{3}{2}+\frac{1}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-x+\frac{1}{4}=\frac{7}{4}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{3}{2} ਨੂੰ \frac{1}{4} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{1}{2}\right)^{2}=\frac{7}{4}
ਫੈਕਟਰ x^{2}-x+\frac{1}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{2}=\frac{\sqrt{7}}{2} x-\frac{1}{2}=-\frac{\sqrt{7}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{7}+1}{2} x=\frac{1-\sqrt{7}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{2} ਨੂੰ ਜੋੜੋ।