x ਲਈ ਹਲ ਕਰੋ
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
x=3
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Polynomial
\frac { x } { x ^ { 2 } - 2 x } - \frac { 5 } { 3 x ^ { 2 } - 12 } = \frac { 2 } { x }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(3x+6\right)x-x\times 5=\left(3x^{2}-12\right)\times 2
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x\left(x-2\right)\left(x+2\right), ਜੋ x^{2}-2x,3x^{2}-12,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}+6x-x\times 5=\left(3x^{2}-12\right)\times 2
3x+6 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x^{2}+6x-x\times 5=6x^{2}-24
3x^{2}-12 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x^{2}+6x-x\times 5-6x^{2}=-24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-3x^{2}+6x-x\times 5=-24
-3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -6x^{2} ਨੂੰ ਮਿਲਾਓ।
-3x^{2}+6x-x\times 5+24=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 24 ਜੋੜੋ।
-3x^{2}+6x-5x+24=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-3x^{2}+x+24=0
x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
a+b=1 ab=-3\times 24=-72
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -3x^{2}+ax+bx+24 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -72 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=9 b=-8
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 1 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-3x^{2}+9x\right)+\left(-8x+24\right)
-3x^{2}+x+24 ਨੂੰ \left(-3x^{2}+9x\right)+\left(-8x+24\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
3x\left(-x+3\right)+8\left(-x+3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 3x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 8 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x+3\right)\left(3x+8\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x+3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=3 x=-\frac{8}{3}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x+3=0 ਅਤੇ 3x+8=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\left(3x+6\right)x-x\times 5=\left(3x^{2}-12\right)\times 2
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x\left(x-2\right)\left(x+2\right), ਜੋ x^{2}-2x,3x^{2}-12,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}+6x-x\times 5=\left(3x^{2}-12\right)\times 2
3x+6 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x^{2}+6x-x\times 5=6x^{2}-24
3x^{2}-12 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x^{2}+6x-x\times 5-6x^{2}=-24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-3x^{2}+6x-x\times 5=-24
-3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -6x^{2} ਨੂੰ ਮਿਲਾਓ।
-3x^{2}+6x-x\times 5+24=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 24 ਜੋੜੋ।
-3x^{2}+6x-5x+24=0
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-3x^{2}+x+24=0
x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)\times 24}}{2\left(-3\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -3 ਨੂੰ a ਲਈ, 1 ਨੂੰ b ਲਈ, ਅਤੇ 24 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-1±\sqrt{1-4\left(-3\right)\times 24}}{2\left(-3\right)}
1 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-1±\sqrt{1+12\times 24}}{2\left(-3\right)}
-4 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-1±\sqrt{1+288}}{2\left(-3\right)}
12 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-1±\sqrt{289}}{2\left(-3\right)}
1 ਨੂੰ 288 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-1±17}{2\left(-3\right)}
289 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-1±17}{-6}
2 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{16}{-6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-1±17}{-6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -1 ਨੂੰ 17 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{8}{3}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{16}{-6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{18}{-6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-1±17}{-6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -1 ਵਿੱਚੋਂ 17 ਨੂੰ ਘਟਾਓ।
x=3
-18 ਨੂੰ -6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{8}{3} x=3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(3x+6\right)x-x\times 5=\left(3x^{2}-12\right)\times 2
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,0,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x\left(x-2\right)\left(x+2\right), ਜੋ x^{2}-2x,3x^{2}-12,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}+6x-x\times 5=\left(3x^{2}-12\right)\times 2
3x+6 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x^{2}+6x-x\times 5=6x^{2}-24
3x^{2}-12 ਨੂੰ 2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x^{2}+6x-x\times 5-6x^{2}=-24
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-3x^{2}+6x-x\times 5=-24
-3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -6x^{2} ਨੂੰ ਮਿਲਾਓ।
-3x^{2}+6x-5x=-24
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-3x^{2}+x=-24
x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
\frac{-3x^{2}+x}{-3}=-\frac{24}{-3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{1}{-3}x=-\frac{24}{-3}
-3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{3}x=-\frac{24}{-3}
1 ਨੂੰ -3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{1}{3}x=8
-24 ਨੂੰ -3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=8+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{6} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1}{3}x+\frac{1}{36}=8+\frac{1}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{289}{36}
8 ਨੂੰ \frac{1}{36} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{1}{6}\right)^{2}=\frac{289}{36}
ਫੈਕਟਰ x^{2}-\frac{1}{3}x+\frac{1}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{6}=\frac{17}{6} x-\frac{1}{6}=-\frac{17}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=3 x=-\frac{8}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{6} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}