x ਲਈ ਹਲ ਕਰੋ
x=-3
x=2
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Polynomial
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { x } { x + 1 } + \frac { x + 1 } { x } = \frac { 13 } { 6 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
6xx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6x\left(x+1\right), ਜੋ x+1,x,6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
6x^{2}+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
6x^{2}+6x^{2}+12x+6=13x\left(x+1\right)
6x+6 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
12x^{2}+12x+6=13x\left(x+1\right)
12x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x^{2} ਅਤੇ 6x^{2} ਨੂੰ ਮਿਲਾਓ।
12x^{2}+12x+6=13x^{2}+13x
13x ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+12x+6-13x^{2}=13x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 13x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}+12x+6=13x
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ -13x^{2} ਨੂੰ ਮਿਲਾਓ।
-x^{2}+12x+6-13x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 13x ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-x+6=0
-x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x ਅਤੇ -13x ਨੂੰ ਮਿਲਾਓ।
a+b=-1 ab=-6=-6
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -x^{2}+ax+bx+6 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-6 2,-3
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -6 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-6=-5 2-3=-1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=2 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -1 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-x^{2}+2x\right)+\left(-3x+6\right)
-x^{2}-x+6 ਨੂੰ \left(-x^{2}+2x\right)+\left(-3x+6\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(-x+2\right)+3\left(-x+2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x+2\right)\left(x+3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x+2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=2 x=-3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x+2=0 ਅਤੇ x+3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
6xx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6x\left(x+1\right), ਜੋ x+1,x,6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
6x^{2}+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
6x^{2}+6x^{2}+12x+6=13x\left(x+1\right)
6x+6 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
12x^{2}+12x+6=13x\left(x+1\right)
12x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x^{2} ਅਤੇ 6x^{2} ਨੂੰ ਮਿਲਾਓ।
12x^{2}+12x+6=13x^{2}+13x
13x ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+12x+6-13x^{2}=13x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 13x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}+12x+6=13x
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ -13x^{2} ਨੂੰ ਮਿਲਾਓ।
-x^{2}+12x+6-13x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 13x ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-x+6=0
-x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x ਅਤੇ -13x ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -1 ਨੂੰ b ਲਈ, ਅਤੇ 6 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-1\right)±\sqrt{1+4\times 6}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-1\right)}
4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-1\right)}
1 ਨੂੰ 24 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-1\right)±5}{2\left(-1\right)}
25 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{1±5}{2\left(-1\right)}
-1 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 1 ਹੈ।
x=\frac{1±5}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1±5}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 1 ਨੂੰ 5 ਵਿੱਚ ਜੋੜੋ।
x=-3
6 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{4}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1±5}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 1 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
x=2
-4 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-3 x=2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
6xx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -1,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6x\left(x+1\right), ਜੋ x+1,x,6 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
6x^{2}+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
6x^{2}+6x^{2}+12x+6=13x\left(x+1\right)
6x+6 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
12x^{2}+12x+6=13x\left(x+1\right)
12x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6x^{2} ਅਤੇ 6x^{2} ਨੂੰ ਮਿਲਾਓ।
12x^{2}+12x+6=13x^{2}+13x
13x ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
12x^{2}+12x+6-13x^{2}=13x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 13x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}+12x+6=13x
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ -13x^{2} ਨੂੰ ਮਿਲਾਓ।
-x^{2}+12x+6-13x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 13x ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-x+6=0
-x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x ਅਤੇ -13x ਨੂੰ ਮਿਲਾਓ।
-x^{2}-x=-6
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{-x^{2}-x}{-1}=-\frac{6}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{6}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+x=-\frac{6}{-1}
-1 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+x=6
-6 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
1, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+x+\frac{1}{4}=\frac{25}{4}
6 ਨੂੰ \frac{1}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
ਫੈਕਟਰ x^{2}+x+\frac{1}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{2} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}