a ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}a=-\frac{bx}{y-b}\text{, }&b\neq 0\text{ and }x\neq 0\text{ and }y\neq b\\a\neq 0\text{, }&b=y\text{ and }x=0\text{ and }y\neq 0\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}b=-\frac{ay}{x-a}\text{, }&a\neq 0\text{ and }y\neq 0\text{ and }x\neq a\\b\neq 0\text{, }&a=x\text{ and }y=0\text{ and }x\neq 0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
bx+ay=ab
ਵੇਰੀਏਬਲ a, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ab, ਜੋ a,b ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
bx+ay-ab=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ ab ਨੂੰ ਘਟਾ ਦਿਓ।
ay-ab=-bx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ bx ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\left(y-b\right)a=-bx
a ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(y-b\right)a}{y-b}=-\frac{bx}{y-b}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ y-b ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=-\frac{bx}{y-b}
y-b ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ y-b ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=-\frac{bx}{y-b}\text{, }a\neq 0
ਵੇਰੀਏਬਲ a, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
bx+ay=ab
ਵੇਰੀਏਬਲ b, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ab, ਜੋ a,b ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
bx+ay-ab=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ ab ਨੂੰ ਘਟਾ ਦਿਓ।
bx-ab=-ay
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ ay ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\left(x-a\right)b=-ay
b ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(x-a\right)b}{x-a}=-\frac{ay}{x-a}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-a ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=-\frac{ay}{x-a}
x-a ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x-a ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=-\frac{ay}{x-a}\text{, }b\neq 0
ਵੇਰੀਏਬਲ b, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}