ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-16=3x\left(x+4\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -4,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x\left(x+4\right) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}-16=3x^{2}+12x
3x ਨੂੰ x+4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-16-3x^{2}=12x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}-16=12x
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}-16-12x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-8-6x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
-x^{2}-6x-8=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-6 ab=-\left(-8\right)=8
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -x^{2}+ax+bx-8 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-8 -2,-4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 8 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-8=-9 -2-4=-6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-2 b=-4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -6 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-x^{2}-2x\right)+\left(-4x-8\right)
-x^{2}-6x-8 ਨੂੰ \left(-x^{2}-2x\right)+\left(-4x-8\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(-x-2\right)+4\left(-x-2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x-2\right)\left(x+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=-2 x=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x-2=0 ਅਤੇ x+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=-2
ਵੇਰੀਏਬਲ x, -4 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
x^{2}-16=3x\left(x+4\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -4,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x\left(x+4\right) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}-16=3x^{2}+12x
3x ਨੂੰ x+4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-16-3x^{2}=12x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}-16=12x
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}-16-12x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}-12x-16=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-2\right)\left(-16\right)}}{2\left(-2\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -2 ਨੂੰ a ਲਈ, -12 ਨੂੰ b ਲਈ, ਅਤੇ -16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-2\right)\left(-16\right)}}{2\left(-2\right)}
-12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144+8\left(-16\right)}}{2\left(-2\right)}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2\left(-2\right)}
8 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{16}}{2\left(-2\right)}
144 ਨੂੰ -128 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-12\right)±4}{2\left(-2\right)}
16 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{12±4}{2\left(-2\right)}
-12 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 12 ਹੈ।
x=\frac{12±4}{-4}
2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{16}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±4}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 12 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
x=-4
16 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{8}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±4}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 12 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾਓ।
x=-2
8 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-4 x=-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=-2
ਵੇਰੀਏਬਲ x, -4 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
x^{2}-16=3x\left(x+4\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -4,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x\left(x+4\right) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}-16=3x^{2}+12x
3x ਨੂੰ x+4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
x^{2}-16-3x^{2}=12x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}-16=12x
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}-16-12x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}-12x=16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{-2x^{2}-12x}{-2}=\frac{16}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{12}{-2}\right)x=\frac{16}{-2}
-2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+6x=\frac{16}{-2}
-12 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+6x=-8
16 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+6x+3^{2}=-8+3^{2}
6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3 ਨਿਕਲੇ। ਫੇਰ, 3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+6x+9=-8+9
3 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+6x+9=1
-8 ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(x+3\right)^{2}=1
ਫੈਕਟਰ x^{2}+6x+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+3=1 x+3=-1
ਸਪਸ਼ਟ ਕਰੋ।
x=-2 x=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
x=-2
ਵੇਰੀਏਬਲ x, -4 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।