ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
m ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
n ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
m ਲਈ ਹਲ ਕਰੋ
Tick mark Image
n ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-5\right)\left(x-2\right), ਜੋ x^{2}-7x+10,x-5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+mx+n=x^{2}-x-2
x-2 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
mx+n=x^{2}-x-2-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
mx+n=-x-2
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
mx=-x-2-n
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ n ਨੂੰ ਘਟਾ ਦਿਓ।
xm=-x-n-2
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{xm}{x}=\frac{-x-n-2}{x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{-x-n-2}{x}
x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m=-\frac{x+n+2}{x}
-x-2-n ਨੂੰ x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-5\right)\left(x-2\right), ਜੋ x^{2}-7x+10,x-5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+mx+n=x^{2}-x-2
x-2 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
mx+n=x^{2}-x-2-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
mx+n=-x-2
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
n=-x-2-mx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ mx ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-5\right)\left(x-2\right), ਜੋ x^{2}-7x+10,x-5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+mx+n=x^{2}-x-2
x-2 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
mx+n=x^{2}-x-2-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
mx+n=-x-2
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
mx=-x-2-n
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ n ਨੂੰ ਘਟਾ ਦਿਓ।
xm=-x-n-2
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{xm}{x}=\frac{-x-n-2}{x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{-x-n-2}{x}
x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m=-\frac{x+n+2}{x}
-x-2-n ਨੂੰ x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-5\right)\left(x-2\right), ਜੋ x^{2}-7x+10,x-5 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}+mx+n=x^{2}-x-2
x-2 ਨੂੰ x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
mx+n=x^{2}-x-2-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
mx+n=-x-2
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
n=-x-2-mx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ mx ਨੂੰ ਘਟਾ ਦਿਓ।