x ਲਈ ਹਲ ਕਰੋ
x\geq \frac{1}{13}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2\left(x+2\right)\leq 3\left(5x+1\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6, ਜੋ 3,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ। ਕਿਉਂਕਿ 6 ਧਨਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਓਵੇਂ ਹੀ ਰਹਿੰਦੀ ਹੈ।
2x+4\leq 3\left(5x+1\right)
2 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x+4\leq 15x+3
3 ਨੂੰ 5x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x+4-15x\leq 3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15x ਨੂੰ ਘਟਾ ਦਿਓ।
-13x+4\leq 3
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ -15x ਨੂੰ ਮਿਲਾਓ।
-13x\leq 3-4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-13x\leq -1
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x\geq \frac{-1}{-13}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -13 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ। ਕਿਉਂਕਿ -13 ਰਿਣਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਬਦਲ ਜਾਂਦੀ ਹੈ।
x\geq \frac{1}{13}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਤੋਂ ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਹਟਾ ਕੇ \frac{-1}{-13}ਅੰਕ ਨੂੰ \frac{1}{13} ਤੱਕ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}