v ਲਈ ਹਲ ਕਰੋ
v=-8
v=-6
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(v+14\right)v=12\left(-4\right)
ਵੇਰੀਏਬਲ v, -14 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12\left(v+14\right), ਜੋ 12,v+14 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
v^{2}+14v=12\left(-4\right)
v+14 ਨੂੰ v ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
v^{2}+14v=-48
-48 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ -4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
v^{2}+14v+48=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 48 ਜੋੜੋ।
v=\frac{-14±\sqrt{14^{2}-4\times 48}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 14 ਨੂੰ b ਲਈ, ਅਤੇ 48 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
v=\frac{-14±\sqrt{196-4\times 48}}{2}
14 ਦਾ ਵਰਗ ਕਰੋ।
v=\frac{-14±\sqrt{196-192}}{2}
-4 ਨੂੰ 48 ਵਾਰ ਗੁਣਾ ਕਰੋ।
v=\frac{-14±\sqrt{4}}{2}
196 ਨੂੰ -192 ਵਿੱਚ ਜੋੜੋ।
v=\frac{-14±2}{2}
4 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
v=-\frac{12}{2}
ਹੁਣ, ਸਮੀਕਰਨ v=\frac{-14±2}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -14 ਨੂੰ 2 ਵਿੱਚ ਜੋੜੋ।
v=-6
-12 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
v=-\frac{16}{2}
ਹੁਣ, ਸਮੀਕਰਨ v=\frac{-14±2}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -14 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾਓ।
v=-8
-16 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
v=-6 v=-8
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(v+14\right)v=12\left(-4\right)
ਵੇਰੀਏਬਲ v, -14 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12\left(v+14\right), ਜੋ 12,v+14 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
v^{2}+14v=12\left(-4\right)
v+14 ਨੂੰ v ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
v^{2}+14v=-48
-48 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ -4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
v^{2}+14v+7^{2}=-48+7^{2}
14, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 7 ਨਿਕਲੇ। ਫੇਰ, 7 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
v^{2}+14v+49=-48+49
7 ਦਾ ਵਰਗ ਕਰੋ।
v^{2}+14v+49=1
-48 ਨੂੰ 49 ਵਿੱਚ ਜੋੜੋ।
\left(v+7\right)^{2}=1
ਫੈਕਟਰ v^{2}+14v+49। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(v+7\right)^{2}}=\sqrt{1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
v+7=1 v+7=-1
ਸਪਸ਼ਟ ਕਰੋ।
v=-6 v=-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}