ਮੁਲਾਂਕਣ ਕਰੋ
\frac{2\left(-t^{4}+37t^{3}-455t^{2}+2251t-4024\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
ਵਿਸਤਾਰ ਕਰੋ
-\frac{2\left(t^{4}-37t^{3}+455t^{2}-2251t+4024\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}-\frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। t-17 ਅਤੇ t-11 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(t-17\right)\left(t-11\right) ਹੈ। \frac{t-15}{t-17} ਨੂੰ \frac{t-11}{t-11} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{t-9}{t-11} ਨੂੰ \frac{t-17}{t-17} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
ਕਿਉਂਕਿ \frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} ਅਤੇ \frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{t^{2}-11t-15t+165-t^{2}+17t+9t-153}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{12}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
t^{2}-11t-15t+165-t^{2}+17t+9t-153 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(t-17\right)\left(t-11\right) ਅਤੇ t-5 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(t-17\right)\left(t-11\right)\left(t-5\right) ਹੈ। \frac{12}{\left(t-17\right)\left(t-11\right)} ਨੂੰ \frac{t-5}{t-5} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{t-3}{t-5} ਨੂੰ \frac{\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
ਕਿਉਂਕਿ \frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਅਤੇ \frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}-\frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(t-17\right)\left(t-11\right)\left(t-5\right) ਅਤੇ t-3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) ਹੈ। \frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਨੂੰ \frac{t-3}{t-3} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{t-7}{t-3} ਨੂੰ \frac{\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
ਕਿਉਂਕਿ \frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} ਅਤੇ \frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{t^{4}-36t^{3}+426t^{2}-1916t+2805}
\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}-\frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। t-17 ਅਤੇ t-11 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(t-17\right)\left(t-11\right) ਹੈ। \frac{t-15}{t-17} ਨੂੰ \frac{t-11}{t-11} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{t-9}{t-11} ਨੂੰ \frac{t-17}{t-17} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
ਕਿਉਂਕਿ \frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} ਅਤੇ \frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{t^{2}-11t-15t+165-t^{2}+17t+9t-153}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{12}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
t^{2}-11t-15t+165-t^{2}+17t+9t-153 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(t-17\right)\left(t-11\right) ਅਤੇ t-5 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(t-17\right)\left(t-11\right)\left(t-5\right) ਹੈ। \frac{12}{\left(t-17\right)\left(t-11\right)} ਨੂੰ \frac{t-5}{t-5} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{t-3}{t-5} ਨੂੰ \frac{\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
ਕਿਉਂਕਿ \frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਅਤੇ \frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}-\frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(t-17\right)\left(t-11\right)\left(t-5\right) ਅਤੇ t-3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) ਹੈ। \frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਨੂੰ \frac{t-3}{t-3} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{t-7}{t-3} ਨੂੰ \frac{\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
ਕਿਉਂਕਿ \frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} ਅਤੇ \frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{t^{4}-36t^{3}+426t^{2}-1916t+2805}
\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}