ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
s ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(s+3\right)s-\left(s-3\right)s=36
ਵੇਰੀਏਬਲ s ਕਿਸੇ ਵੀ ਇੱਕ -3,3 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(s-3\right)\left(s+3\right), ਜੋ s-3,s+3,s^{2}-9 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
s^{2}+3s-\left(s-3\right)s=36
s+3 ਨੂੰ s ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
s^{2}+3s-\left(s^{2}-3s\right)=36
s-3 ਨੂੰ s ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
s^{2}+3s-s^{2}+3s=36
s^{2}-3s ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
3s+3s=36
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ s^{2} ਅਤੇ -s^{2} ਨੂੰ ਮਿਲਾਓ।
6s=36
6s ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3s ਅਤੇ 3s ਨੂੰ ਮਿਲਾਓ।
s=\frac{36}{6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
s=6
36 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 6 ਨਿਕਲੇ।