m ਲਈ ਹਲ ਕਰੋ
m=-\frac{2n^{2}+n-546}{n\left(2n+1\right)}
n\neq -\frac{1}{2}\text{ and }n\neq 0
n ਲਈ ਹਲ ਕਰੋ
n=\frac{\sqrt{\left(m+1\right)\left(m+4369\right)}-m-1}{4\left(m+1\right)}
n=-\frac{\sqrt{\left(m+1\right)\left(m+4369\right)}+m+1}{4\left(m+1\right)}\text{, }m>-1\text{ or }m\leq -4369
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
n\left(m+1\right)\left(2n+1\right)=91\times 6
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(nm+n\right)\left(2n+1\right)=91\times 6
n ਨੂੰ m+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2mn^{2}+nm+2n^{2}+n=91\times 6
nm+n ਨੂੰ 2n+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2mn^{2}+nm+2n^{2}+n=546
546 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 91 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
2mn^{2}+nm+n=546-2n^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2n^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
2mn^{2}+nm=546-2n^{2}-n
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ n ਨੂੰ ਘਟਾ ਦਿਓ।
\left(2n^{2}+n\right)m=546-2n^{2}-n
m ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(2n^{2}+n\right)m=546-n-2n^{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(2n^{2}+n\right)m}{2n^{2}+n}=\frac{546-n-2n^{2}}{2n^{2}+n}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2n^{2}+n ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m=\frac{546-n-2n^{2}}{2n^{2}+n}
2n^{2}+n ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2n^{2}+n ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m=\frac{546-n-2n^{2}}{n\left(2n+1\right)}
546-2n^{2}-n ਨੂੰ 2n^{2}+n ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}