ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{m+n}{2m} ਟਾਈਮਸ \frac{m-n}{5m^{3}n} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ਟਾਈਮਸ \frac{1}{10n^{2}} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 3 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
100 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 10 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
\left(m+n\right)\left(m-n\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{m+n}{2m} ਟਾਈਮਸ \frac{m-n}{5m^{3}n} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ਟਾਈਮਸ \frac{1}{10n^{2}} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 3 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
100 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 10 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
\left(m+n\right)\left(m-n\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।