ਮੁਲਾਂਕਣ ਕਰੋ
5
ਵਾਸਤਵਿਕ ਭਾਗ
5
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}}
\sqrt{\frac{1}{5}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{1}}{\sqrt{5}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}}
1 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}}
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1}
i ਨੂੰ 0 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}}
\frac{\sqrt{5}}{5}\times 1 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\sqrt{5}\times 5}{\sqrt{5}}
\sqrt{5} ਨੂੰ \frac{\sqrt{5}}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \sqrt{5}ਨੂੰ \frac{\sqrt{5}}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{5}\times 5}{\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\sqrt{5}\times 5\sqrt{5}}{5}
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
\frac{5\times 5}{5}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{5} ਅਤੇ \sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{25}{5}
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
5
25 ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ।
Re(\frac{\sqrt{5}}{\sqrt{\frac{1}{5}}i^{0}})
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਨੂੰ ਘਟਾ ਦਿਓ।
Re(\frac{\sqrt{5}}{\frac{\sqrt{1}}{\sqrt{5}}i^{0}})
\sqrt{\frac{1}{5}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{1}}{\sqrt{5}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
Re(\frac{\sqrt{5}}{\frac{1}{\sqrt{5}}i^{0}})
1 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}i^{0}})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}i^{0}})
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}\times 1})
i ਨੂੰ 0 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
Re(\frac{\sqrt{5}}{\frac{\sqrt{5}}{5}})
\frac{\sqrt{5}}{5}\times 1 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
Re(\frac{\sqrt{5}\times 5}{\sqrt{5}})
\sqrt{5} ਨੂੰ \frac{\sqrt{5}}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \sqrt{5}ਨੂੰ \frac{\sqrt{5}}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{\left(\sqrt{5}\right)^{2}})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{5} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{5}\times 5}{\sqrt{5}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
Re(\frac{\sqrt{5}\times 5\sqrt{5}}{5})
\sqrt{5} ਦਾ ਸਕ੍ਵੇਅਰ 5 ਹੈ।
Re(\frac{5\times 5}{5})
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{5} ਅਤੇ \sqrt{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
Re(\frac{25}{5})
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
Re(5)
25 ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ।
5
5 ਦਾ ਅਸਲੀ ਹਿੱਸਾ 5 ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}