ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-4\left(2x^{3}-3x^{1}\right)^{-4-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}-3x^{1})
ਜੇ F ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ f\left(u\right) ਅਤੇ u=g\left(x\right) ਦਾ ਸੰਯੋਜਨ ਹੈ, ਯਾਂਨੀ, ਜੇF\left(x\right)=f\left(g\left(x\right)\right), F ਦਾ ਡੈਰੀਵੇਟਿਵ u ਦੇ ਸਬੰਧ ਵਿੱਚ f ਦਾ ਡੈਰੀਵੇਟਿਵ ਗੁਣਾ x ਦੇ ਸਬੰਧ ਵਿੱਚ g ਦਾ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ, ਯਾਂਨੀ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)।
-4\left(2x^{3}-3x^{1}\right)^{-5}\left(3\times 2x^{3-1}-3x^{1-1}\right)
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\left(2x^{3}-3x^{1}\right)^{-5}\left(-24x^{2}+12x^{0}\right)
ਸਪਸ਼ਟ ਕਰੋ।
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12x^{0}\right)
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\times 1\right)
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\right)
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।