ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x+3}\right)^{2}})
\frac{1}{\sqrt{x+3}} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(\sqrt{x+3}\right)^{2}})
1 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
\sqrt{x+3} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x+3 ਪ੍ਰਾਪਤ ਕਰੋ।
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
ਜੇ F ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ f\left(u\right) ਅਤੇ u=g\left(x\right) ਦਾ ਸੰਯੋਜਨ ਹੈ, ਯਾਂਨੀ, ਜੇF\left(x\right)=f\left(g\left(x\right)\right), F ਦਾ ਡੈਰੀਵੇਟਿਵ u ਦੇ ਸਬੰਧ ਵਿੱਚ f ਦਾ ਡੈਰੀਵੇਟਿਵ ਗੁਣਾ x ਦੇ ਸਬੰਧ ਵਿੱਚ g ਦਾ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ, ਯਾਂਨੀ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)।
-\left(x^{1}+3\right)^{-2}x^{1-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
-x^{0}\left(x^{1}+3\right)^{-2}
ਸਪਸ਼ਟ ਕਰੋ।
-x^{0}\left(x+3\right)^{-2}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
-\left(x+3\right)^{-2}
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।