ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\frac{b}{a-b}}{\frac{aa}{a\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-b ਅਤੇ a ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-b\right) ਹੈ। \frac{a}{a-b} ਨੂੰ \frac{a}{a} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{a+b}{a} ਨੂੰ \frac{a-b}{a-b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{b}{a-b}}{\frac{aa-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
ਕਿਉਂਕਿ \frac{aa}{a\left(a-b\right)} ਅਤੇ \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{b}{a-b}}{\frac{a^{2}-a^{2}+ab-ba+b^{2}}{a\left(a-b\right)}}
aa-\left(a+b\right)\left(a-b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{b}{a-b}}{\frac{b^{2}}{a\left(a-b\right)}}
a^{2}-a^{2}+ab-ba+b^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{ba\left(a-b\right)}{\left(a-b\right)b^{2}}
\frac{b}{a-b} ਨੂੰ \frac{b^{2}}{a\left(a-b\right)} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{b}{a-b}ਨੂੰ \frac{b^{2}}{a\left(a-b\right)} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{a}{b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ b\left(a-b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{b}{a-b}}{\frac{aa}{a\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-b ਅਤੇ a ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-b\right) ਹੈ। \frac{a}{a-b} ਨੂੰ \frac{a}{a} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{a+b}{a} ਨੂੰ \frac{a-b}{a-b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{b}{a-b}}{\frac{aa-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
ਕਿਉਂਕਿ \frac{aa}{a\left(a-b\right)} ਅਤੇ \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{b}{a-b}}{\frac{a^{2}-a^{2}+ab-ba+b^{2}}{a\left(a-b\right)}}
aa-\left(a+b\right)\left(a-b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{b}{a-b}}{\frac{b^{2}}{a\left(a-b\right)}}
a^{2}-a^{2}+ab-ba+b^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{ba\left(a-b\right)}{\left(a-b\right)b^{2}}
\frac{b}{a-b} ਨੂੰ \frac{b^{2}}{a\left(a-b\right)} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{b}{a-b}ਨੂੰ \frac{b^{2}}{a\left(a-b\right)} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{a}{b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ b\left(a-b\right) ਨੂੰ ਰੱਦ ਕਰੋ।