ਮੁਲਾਂਕਣ ਕਰੋ
\frac{1}{a}
ਵਿਸਤਾਰ ਕਰੋ
\frac{1}{a}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{b}{a\left(a+b\right)}-\frac{a}{b\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
a^{2}+ab ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। b^{2}-ab ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a\left(a+b\right) ਅਤੇ b\left(-a+b\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ ab\left(a+b\right)\left(-a+b\right) ਹੈ। \frac{b}{a\left(a+b\right)} ਨੂੰ \frac{b\left(-a+b\right)}{b\left(-a+b\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{a}{b\left(-a+b\right)} ਨੂੰ \frac{a\left(a+b\right)}{a\left(a+b\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{bb\left(-a+b\right)-aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
ਕਿਉਂਕਿ \frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} ਅਤੇ \frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
bb\left(-a+b\right)-aa\left(a+b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)}
a^{2}b-b^{3} ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)}-\frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। ab\left(a+b\right)\left(-a+b\right) ਅਤੇ b\left(a+b\right)\left(a-b\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ ab\left(a+b\right)\left(a-b\right) ਹੈ। \frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)} ਨੂੰ \frac{-1}{-1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)} ਨੂੰ \frac{a}{a} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
ਕਿਉਂਕਿ \frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)} ਅਤੇ \frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a}{ab\left(a+b\right)\left(a-b\right)}
-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)}
b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{b\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}
\frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{1}{a}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ b\left(a+b\right)\left(a-b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{b}{a\left(a+b\right)}-\frac{a}{b\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
a^{2}+ab ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। b^{2}-ab ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a\left(a+b\right) ਅਤੇ b\left(-a+b\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ ab\left(a+b\right)\left(-a+b\right) ਹੈ। \frac{b}{a\left(a+b\right)} ਨੂੰ \frac{b\left(-a+b\right)}{b\left(-a+b\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{a}{b\left(-a+b\right)} ਨੂੰ \frac{a\left(a+b\right)}{a\left(a+b\right)} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{bb\left(-a+b\right)-aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
ਕਿਉਂਕਿ \frac{bb\left(-a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} ਅਤੇ \frac{aa\left(a+b\right)}{ab\left(a+b\right)\left(-a+b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{a^{2}b-b^{3}}
bb\left(-a+b\right)-aa\left(a+b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)}-\frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)}
a^{2}b-b^{3} ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)}-\frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। ab\left(a+b\right)\left(-a+b\right) ਅਤੇ b\left(a+b\right)\left(a-b\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ ab\left(a+b\right)\left(a-b\right) ਹੈ। \frac{-b^{2}a+b^{3}-a^{3}-a^{2}b}{ab\left(a+b\right)\left(-a+b\right)} ਨੂੰ \frac{-1}{-1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{a^{2}+b^{2}}{b\left(a+b\right)\left(a-b\right)} ਨੂੰ \frac{a}{a} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)}
ਕਿਉਂਕਿ \frac{-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)}{ab\left(a+b\right)\left(a-b\right)} ਅਤੇ \frac{\left(a^{2}+b^{2}\right)a}{ab\left(a+b\right)\left(a-b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a}{ab\left(a+b\right)\left(a-b\right)}
-\left(-b^{2}a+b^{3}-a^{3}-a^{2}b\right)-\left(a^{2}+b^{2}\right)a ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)}
b^{2}a-b^{3}+a^{3}+a^{2}b-a^{3}-b^{2}a ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{b\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}
\frac{a^{2}b-b^{3}}{ab\left(a+b\right)\left(a-b\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{1}{a}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ b\left(a+b\right)\left(a-b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}