L ਲਈ ਹਲ ਕਰੋ
L=\frac{a-b}{3}
a ਲਈ ਹਲ ਕਰੋ
a=3L+b
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{3}a-\frac{1}{3}b=L
a-b ਦੇ ਹਰ ਅੰਕ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{3}a-\frac{1}{3}b ਨਿਕਲੇ।
L=\frac{1}{3}a-\frac{1}{3}b
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{1}{3}a-\frac{1}{3}b=L
a-b ਦੇ ਹਰ ਅੰਕ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{3}a-\frac{1}{3}b ਨਿਕਲੇ।
\frac{1}{3}a=L+\frac{1}{3}b
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{3}b ਜੋੜੋ।
\frac{1}{3}a=\frac{b}{3}+L
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\frac{1}{3}a}{\frac{1}{3}}=\frac{\frac{b}{3}+L}{\frac{1}{3}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
a=\frac{\frac{b}{3}+L}{\frac{1}{3}}
\frac{1}{3} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \frac{1}{3} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=3L+b
L+\frac{b}{3} ਨੂੰ \frac{1}{3} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ L+\frac{b}{3}ਨੂੰ \frac{1}{3} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}