ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
\frac{a+4}{a^{2}-6a+9} ਨੂੰ \frac{a^{2}-16}{2a-6} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{a+4}{a^{2}-6a+9}ਨੂੰ \frac{a^{2}-16}{2a-6} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(a-3\right)\left(a+4\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(a-4\right)\left(a-3\right) ਅਤੇ a-4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(a-4\right)\left(a-3\right) ਹੈ। \frac{2}{a-4} ਨੂੰ \frac{a-3}{a-3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
ਕਿਉਂਕਿ \frac{2}{\left(a-4\right)\left(a-3\right)} ਅਤੇ \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
2-2\left(a-3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
2-2a+6 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
\frac{8-2a}{\left(a-4\right)\left(a-3\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
4-a ਵਿੱਚ ਨੇਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਕੱਢੋ।
\frac{-2}{a-3}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a-4 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
\frac{a+4}{a^{2}-6a+9} ਨੂੰ \frac{a^{2}-16}{2a-6} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{a+4}{a^{2}-6a+9}ਨੂੰ \frac{a^{2}-16}{2a-6} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(a-3\right)\left(a+4\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। \left(a-4\right)\left(a-3\right) ਅਤੇ a-4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(a-4\right)\left(a-3\right) ਹੈ। \frac{2}{a-4} ਨੂੰ \frac{a-3}{a-3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
ਕਿਉਂਕਿ \frac{2}{\left(a-4\right)\left(a-3\right)} ਅਤੇ \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
2-2\left(a-3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
2-2a+6 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
\frac{8-2a}{\left(a-4\right)\left(a-3\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
4-a ਵਿੱਚ ਨੇਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਕੱਢੋ।
\frac{-2}{a-3}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a-4 ਨੂੰ ਰੱਦ ਕਰੋ।