ਮੁਲਾਂਕਣ ਕਰੋ
\frac{2\left(a^{2}+1\right)}{a\left(a^{2}-1\right)}
ਵਿਸਤਾਰ ਕਰੋ
\frac{2\left(a^{2}+1\right)}{a\left(a^{2}-1\right)}
ਕੁਇਜ਼
Polynomial
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { a + 1 } { a ^ { 2 } - a } - \frac { 1 - a } { a ^ { 2 } + a }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{a+1}{a\left(a-1\right)}-\frac{1-a}{a\left(a+1\right)}
a^{2}-a ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। a^{2}+a ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a\left(a-1\right) ਅਤੇ a\left(a+1\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-1\right)\left(a+1\right) ਹੈ। \frac{a+1}{a\left(a-1\right)} ਨੂੰ \frac{a+1}{a+1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1-a}{a\left(a+1\right)} ਨੂੰ \frac{a-1}{a-1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
ਕਿਉਂਕਿ \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} ਅਤੇ \frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{a^{2}+a+a+1-a+1+a^{2}-a}{a\left(a-1\right)\left(a+1\right)}
\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{2a^{2}+2}{a\left(a-1\right)\left(a+1\right)}
a^{2}+a+a+1-a+1+a^{2}-a ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2a^{2}+2}{a^{3}-a}
a\left(a-1\right)\left(a+1\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{a+1}{a\left(a-1\right)}-\frac{1-a}{a\left(a+1\right)}
a^{2}-a ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। a^{2}+a ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a\left(a-1\right) ਅਤੇ a\left(a+1\right) ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ a\left(a-1\right)\left(a+1\right) ਹੈ। \frac{a+1}{a\left(a-1\right)} ਨੂੰ \frac{a+1}{a+1} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1-a}{a\left(a+1\right)} ਨੂੰ \frac{a-1}{a-1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}
ਕਿਉਂਕਿ \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} ਅਤੇ \frac{\left(1-a\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{a^{2}+a+a+1-a+1+a^{2}-a}{a\left(a-1\right)\left(a+1\right)}
\left(a+1\right)\left(a+1\right)-\left(1-a\right)\left(a-1\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{2a^{2}+2}{a\left(a-1\right)\left(a+1\right)}
a^{2}+a+a+1-a+1+a^{2}-a ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2a^{2}+2}{a^{3}-a}
a\left(a-1\right)\left(a+1\right) ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}