Y ਲਈ ਹਲ ਕਰੋ
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
U\neq 0\text{ and }s\neq 0\text{ and }s\neq -1\text{ and }s\neq -2
U ਲਈ ਹਲ ਕਰੋ
U=Ys\left(s+1\right)\left(s+2\right)
s\neq 0\text{ and }s\neq -2\text{ and }s\neq -1\text{ and }Y\neq 0
ਕੁਇਜ਼
Algebra
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { Y ( s ) } { U ( s ) } = \frac { 1 } { s ( s + 1 ) ( s + 2 ) }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(s+1\right)\left(s+2\right)Ys=U
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ Us\left(s+1\right)\left(s+2\right), ਜੋ Us,s\left(s+1\right)\left(s+2\right) ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(s^{2}+3s+2\right)Ys=U
s+1 ਨੂੰ s+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\left(s^{2}Y+3sY+2Y\right)s=U
s^{2}+3s+2 ਨੂੰ Y ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
Ys^{3}+3Ys^{2}+2Ys=U
s^{2}Y+3sY+2Y ਨੂੰ s ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\left(s^{3}+3s^{2}+2s\right)Y=U
Y ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(s^{3}+3s^{2}+2s\right)Y}{s^{3}+3s^{2}+2s}=\frac{U}{s^{3}+3s^{2}+2s}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3s^{2}+s^{3}+2s ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
Y=\frac{U}{s^{3}+3s^{2}+2s}
3s^{2}+s^{3}+2s ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3s^{2}+s^{3}+2s ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
U ਨੂੰ 3s^{2}+s^{3}+2s ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}